Secure 2PC

Oleg Fomenko

2025

Secure 2PC – Secure Two Party Computation:

- ▶ X Alice's private input
- ▶ \mathcal{Y} Bob's private input
- $\mathcal{O} = f(\mathcal{X}, \mathcal{Y})$ public output for arbitrary circuit f

Simple example

Obvious transfer

Pick one, but don't tell me M1 which one M2 MЗ Μ4

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Obvious transfer

- Alice selects m_1, \cdots, m_n
- Alice DOES NOT share them
- ▶ Bob selects $j \in \{1, ..., n\}$
- Alice and Bob run the OT protocol

- Bob receives m_j
- Alice knows nothing about j

Commutative encryption scheme

Commutative encryption – is a type of encryption scheme where the order of encryption with different keys doesn't matter:

$$orall k_1, k_2$$
:
 $E_{k_1}(E_{k_2}(m)) = E_{k_1}(E_{k_2}(m))$

$orall k_1, k_2 \colon c = E_{k_1}(E_{k_2}(m)) \colon D_{k_1}(D_{k_2}(c)) = D_{k_2}(D_{k_1}(c))$

Example

One-Time Pad:

$$m \oplus k_1 \oplus k_2 = m \oplus k_2 \oplus k_1$$

CTR mode

► *k* – private key

- E_k encryption function for private key k
- ctr_i counter for *i*-th message
- ▶ *m_i* − *i*-th message
- $\blacktriangleright C_i = m_i \oplus E_k(ctr_i)$
- $\blacktriangleright m_i = C_i \oplus E_k(ctr_i)$

Ref: Block cipher mode of operation Ref: Bruce Schneier: Practical Cryptography

(日) (日) (日) (日) (日) (日) (日)

Back to Obvious transfer

- Alice has m_1, \ldots, m_n
- Alice encrypts m_i and sends E_A(m₁),..., E_A(m_n) to Bob
- ▶ Bob selects *j* and submits $E_B(E_A(m_j))$ to Alice

- Alice decrypts ad submits
 D_A(E_B(E_A(m_j))) = E_B(m_j) to Bob
- Bob decrypts and receives m_j

Obvious transfer

Important: Bob knows the reasons for picking a second value.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Back to 2PC: Garbled Circuits

Every possible XOR gate evaluation:

А	В	\oplus
0	0	0
1	0	1
0	1	1
1	1	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Imagine Alice's bit equals 1, Alice reduces this table:

А	В	\oplus
1	0	1
1	1	0

(ロ)、(型)、(E)、(E)、 E) のQ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For each possible Bob's input, Alice puts:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Alice shares $E_{\kappa_1}(1)$ and $E_{\kappa_2}(0)$
- ▶ Alice and Bob run OT for K_1, K_2

From Bob's perspective

- ▶ Bob receives $E_{\kappa_1}(1)$ and $E_{\kappa_2}(0)$
- Imagine Bob's input equals 0
- ▶ Bob using K_1 decrypts $E_{K_1}(1)$ receiving result 1

Bob shares the result with Alice if needed

Summary

- Alice, using her input, evaluates a circuit for each possible Bob's input
- Alice picks keys for each possible Bob's input and encrypts each possible result

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Bob selects a key for his input using the OT protocol
- Bob opens the result

Third side

- Anton evaluates circuit results for each possible pair of inputs from Alice and Bob.
- Anton doubly encrypts each with different keys:

$$\begin{array}{c|ccc} A & B & \oplus \\ \hline 0 & 0 & E_{K^1_A}(E_{K^1_B}(0)) \\ 1 & 0 & E_{K^1_A}(E_{K^0_B}(1)) \\ 0 & 1 & E_{K^0_A}(E_{K^1_B}(1)) \\ 1 & 1 & E_{K^0_A}(E_{K^0_B}(0)) \end{array}$$

- Alice selects a key for her bit, decrypts the corresponding results, and shares with Bob
- Bob selects a key, decrypts the result

Multiple gates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Multiple gates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

WRONG! requires more work from the circuit generator side: $\mathcal{O}(2^n)$. We want $\mathcal{O}(g)$

n – number of inputs, g – number of gates

Solution

- For each gate's input, select a pair of keys for 0 and 1 bits.
- All intermediate gates return corresponding keys to the next gate input

Output gate returns 0/1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To read about:

- Garbled Circuits
- Obvious transfer
- CTR cipher mode of operation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Commutative encryption