
0.1 Introduction
ZK-STARK (Zero-Knowledge Scalable Transparent Argument of Knowledge) is a crypto-

graphic proof system that allows one party to prove to another the knowledge of a piece of
information without revealing the information itself, while ensuring scalability and transparency.

In this context, “scalable” implies that the time required by the prover grows at most quasilin-
early (linear up to the logarithmic factor) relative to the runtime of the witness-checking process.
Additionally, the verification (including both time and proof size) is limited to a polylogarithmic
growth concerning this runtime.

In turn, “transparent” means there is no requirement for a trusted setup, unlike SNARKs.
STARK protocol utilizes advanced mathematical techniques like Fast Reed-Solomon IOP of
Proximity and Merkle trees to achieve this. The security of STARK lies on the difficulty of
computing the inverse to the hash function, so we can consider STARK as a quantum-safe
protocol if the used hash function also inherits this property.

Note that the term “STARK” does not specify the protocol interactivity. But today, most
of the STARK protocols (or probably all of the existing protocols) are deployed in the non-
interactive environment (which makes all of them SNARKs). This means that we really do
not need the additional abbreviation for the existing STARK protocols — all of them can be
considered as a “transparent SNARKs”.

0.2 STARK-friendly fields
In general, STARK protocol can work over any field F with high two-adicity. The primary

reason for that is that STARKs can work only with NTT-friendly fields, and the NTT-friendly
fields are the fields where we can select the multiplicative subgroup of order 2k for sufficiently
many values of k .

Definition 0.1. We call two-adicity fields, the fields where we can select the multiplicative
subgroup of order 2k for sufficiently many values of k . In this case, the field order p is
typically of form p = 2m · p′ + 1 where p′ is a small integer.

To be honest, all protocol steps are followed with powers of two. It will be shown, why the
groups we are working over must be of size 2k and why the input data also follows this rule. As
the result, the maximum size of the statement that we can prove using the STARK protocol is
strictly depends on the size of two-adicity subgroup (that is why we label some fields to have
high two-adicity or low two-adicity).

Remark. In our initial discussion we consider using field over prime modulus p = 3 · 230 + 1
and subgroups of size 213 and 210.

As we will work in the new subgroup we may want to specify the subgroup generator to be
used in future equations. So, for the multiplicative group generator w ∈ F×p , the generator of

the subgroup of order 2k is ωk = w
p−1
2k , as was shown in the NTT section.

Example. For the prime field Fp where p = 3 ·230+1, the order of F×p is p−1 = 3 ·230. If we
take w = 5 as the primitive element, the multiplicative subgroup of 213 elements generator
will be ω = 53·2

17

1

This kind of subgroups comes with very useful property: for each element in two-adicity
subgroup H, the additive inverse element can be calculated by a simple equation over the
element power.

Proposition 0.2. Suppose H ≤ Fp is a subgroup of order r with generator h = w (p−1)/r .
Then, the additive inverse for x = hi ∈ H is hj where j = i + r

2
(mod r).

Proof. The sum of x and −x must equal to zero modulo p, so:

x + (−x) = w (p−1)i/r + w (p−1)j/r = w (p−1)i/r(1 + w (p−1)(j−i)/r) = w (p−1)i/r(1 + w (p−1)/2)

Now note that w (p−1)/2 = −1 which completes the proof. ■

Remark. The equation w p−1 = 1 is obtained from the order property of the primitive element
w in the multiplicative group F×p .

Remark. This provides us with an additional important property beyond element’s power
computation: when working with a negative element, its power shift equals half the size of
the subgroup so, squaring the elements within this subgroup results in a smaller subgroup,
reduced by a factor of two. Consequently, to compute the square of the subgroup, it suffices
to square only the first half of its elements (powers 0, 1, 2, 3, . . . , r

2
).

0.3 Protocol definition
0.3.1 Trace, evaluation domain and commitment

Now, we are going to prove that some statement holds on the given sequence of elements.

Definition 0.3. We call trace a sequence of elements from F that represents our witness.
This sequence contains private and public values together and follows certain constraints.

Example. The Fibonacci square sequence is a sequence of elements defined over F as
follows:

aj+2 = a
2
j+1 + a

2
j

Then we can, for example, prove the following statement: I know a field element w ∈ F
such that the k th element of the Fibonacci square sequence (ak) starting with x and w is y .
Formally, this can be written as:

RFib =

{
Public Statement: (x, y , k)

Witness: w

∣∣∣ a0 = x, a1 = w, ak = y with
aj+2 = a

2
j+1 + a

2
j for all j ∈ [k]

}
For concreteness, let us take k = 1023, x = 1, and y = 2338775057.

Following the Unisolvence Theorem, the trace {aj}j is implied to be an evaluation of some
unknown trace polynomial of degree equal to the length of the sequence {aj}j . Also, to be
evaluable on the two-adicity subgroup, the size of the trace has to be a power of two.

Definition 0.4. We call domain a two-adicity subgroup G ≤ F× where we evaluate our
polynomials.

2

Example. In our example, we put trace a sequence {aj}j of first 1023 elements of the
Fibonacci square sequence over Fp, where p = 3 · 230 + 1.

1, 1, 2, 5, 29, . . .

To interpolate our trace polynomial we select as a domain a two-adicity subgroup of 210

elements from F×p with a generator g = 5
3·230
210 = 53·2

20
(here 5 is the primitive element in the

multiplicative group F×p). That being said, G = {g i}i∈[1024].

Next, using the Lagrange interpolation over (gj , aj)j∈[k] points we compute a trace polynomial
f ∈ F[x]. Note that the interpolation can be done in O(k log k), as shown in NTT section.

Definition 0.5. We call evaluation domain a two-adicity coset E = wH ≤ F×p , where
H ≤ F×p is a two-adicity subgroup, that is larger ρ ∈ N times (typically a relatively small
constant) than the domain. In other words, ord(H) = ρ · ord(G).

Example. In our case we select a two-adicity subgroup H of 213 elements from F×p with
ρ = 8 as H = {hi}i∈[8192] where h = 53·2

17
. Then, we define the evaluation domain as

E = 5H = {5hi}i∈[8192].

We build a Merkle tree over the values {f (e)}e∈E and label its root as a trace polynomial
commitment. This approach will also be used to commit other polynomials during the protocol
walkthrough.

The constraints in STARK protocol are expressed as polynomials evaluated over the trace
cells, which are satisfied if and only if the computations are correct.

Example. Obviously, our initial statement consists of the following three requirements:
1. The element a0 is equal to 1;
2. The element a1022 is equal to 2338775057;
3. Each element ai+2 is equal to a2i+1 + a

2
i .

To verify that our committed trace polynomial satisfies all constraints, we can check that it
has corresponding roots. In particular, according to the selected interpolation points {(g i , ai)}i∈[k],
the relation r(ai , aj) = 0 can be rewritten as r(f (g i), f (gj)) = 0.

Example. For our Fibonacci trace we have the following constraints to be checked over the
interpolated polynomial:

1. The element a0 is equal to 1 translated to: f (x)− 1 has root at x = g0 = 1;
2. The element a1022 is equal to 2338775057 translated to: f (x)− 2338775057 has root

at x = g1022;
3. Each element ai+2 is equal to a2i+1 + a

2
i translated to: f (g2x) − f (gx)2 − f (x)2 has

roots in G \ {g1021, g1022, g1023}

To ensure that the specified polynomials have roots in given values, we can use the following

3

property: if polynomial f (x) ∈ F[x] has root in x0 then the f (x)
x−x0 is also a polynomial in F[x].

Example. Finally, we define the following STARK constraints:

p0(x) =
f (x)− 1
x − 1

p1(x) =
f (x)− 2338775057

x − g1022

p2(x) =
f (g2x)− f (gx)2 − f (x)2∏1020

i=0 (x − g i)

Unfortunately, the p2 polynomial still looks inconvenient to work with, so we may want to
simplify it (this is not a part of the protocol in general, but you always may want to simplify
your equations to achieve better proving time). Note that p2 is almost a vanishing polynomial
of G, which has a form xord(G) − 1, except for points g1021, g1022, g1023. In other words, we
can simplify the denominator as:

1020∏
i=0

(x − g i) =
x1024 − 1

(x − g1021)(x − g1022)(x − g1023)

Note, that while evaluating our polynomial on a larger domain then G we should only ensure
that the resulting polynomial still holds the relation f (g i) = ai , so it is acceptable to use
properties that only work over G. So, finally we have:

p2(x) =
(f (g2x)− f (gx)2 − f (x)2)(x − g2021)(x − g2022)(x − g2024)

x1024 − 1

In addition, there is one obvious requirement for the STARK constraints: the verifier should
be able to compute the constraints polynomials pi(x) using only the given trace polynomial
evaluations for the certain x .

Remark. In our Fibonacci example, verifier can check the constraint polynomials evaluation
by requesting only f (x), f (gx) and f (g2x) — the values committed in the trace polynomial
commitment.

To combine all our constraints into a single polynomial, we can follow a commonly used
principle by taking a linear combination with the challenges from the verifier. In particular, after
receiving trace polynomial commitment from the prover, the verifier selects scalars α1, . . . , αm
and sends it to the prover. Then, the prover puts the composition polynomial as:

CP(x) :=
m∑
j=1

αj · pj(x)

Additionally, prover also commits this polynomial by evaluating on the evaluation domain and
building a Merkle tree.

4

Example. The Fibonacci composition polynomial looks like as follows:

CP(x) = α0p0(x) + α1p1(x) + α2p2(x) =

α0
f (x)− 1
x − 1 + α1

f (x)− 2338775057
x − g1022 +

α2
(f (g2x)− f (gx)2 − f (x)2)(x − g2021)(x − g2022)(x − g2024)

x1024 − 1

0.3.2 FRI protocol
In general, our goal is to verify that the committed polynomial CP(x) satisfies all our con-

straints, by checking it’s evaluation at a random point from the evaluation domain that the
verifier selects. Anyway, we can face the problem when the malicious prover constructs a larger
polynomial that accepts lots of possible roots from our field (even 264 field is still insecure for
just checking the evaluation at one point). That is why we have to make sure that the com-
mitted polynomial degree lies in the acceptable range (the upper bound depends on the trace
size).

The final stage of the STARK protocol is a Fast Reed-Solomon IOP of Proximity (FRI).
FRI is a protocol between a prover and a verifier, which establishes that a given evaluation
belongs to a polynomial of low-degree. In this context low means no more than ρ times bigger
than the trace.

The key idea of FRI protocol is to move from a polynomial of degree n to a polynomial of
degree n/2 until we get a constant value. Let’s consider the polynomial z0(x) =

∑
i ai · x i of

degree n = 2t and the evaluation domain E0 = E. We suppose to group the odd and the even
coefficients of the z0 together into the two separate polynomials(zO0 and zE0 respectively):

zO0 (x
2) =

n/2∑
i=0

(a2i+1 · x2i)

zE0 (x
2) =

n/2∑
i=0

(a2i · x2i)

Or, in a more comfortable form (we have already examined why searching of −x can be done
easily in our two-adicity subgroup):

zE0 (x
2) =

z0(x) + z0(−x)
2

zO0 (x
2) =

z0(x)− z0(−x)
2x

Then, we define a next-layer of the FRI polynomial as z1(x2) = zE0 (x
2)+βzO0 (x

2), where β is
a challenge received from verifier. The next-layer evaluation domain is also simple to compute:
E1 = {(w · hi)2}i∈[ord(E0)/2] as squaring the other elements in E0 will result in the same values.

Next, we commit to the z1(x2) using a next-layer evaluation domain E1 (is also reduced by
a factor two) and continue to repeat the described operations until zj(x2

j
) becomes constant.

5

Interactive ZK-STARK protocol

The prover and the verifier run the interactive version of the ZK-STARK protocol. Both know
the statement to be proved, that is defined by the constraint polynomials and the field Fp to work
over. Prover also knows the witness to be able to generate the trace.

Preparation

✓ The prover interpolates trace polynomial f (x) and submits its commitment to the verifier.
✓ The verifier selects challenges random αi ∈ Fp and sends to the prover.
✓ The prover builds the composition polynomial CP(x) and submits its commitment to the

verifier.

FRI

✓ The verifier selects random j ∈ [ord(E)], sets c ← w · hj and sends it to the prover.
✓ The prover responds with the CP(c),CP(−c) and all f (x) required to check CP evaluation

with corresponding Merkle proofs to them.
✓ The verifier checks Merkle proofs and the evaluation of CP(c) by evaluating the constraints

polynomials pj(c).
✓ The prover and the verifier go through the FRI protocol for z0(x) = CP (x) where the

prover commits to the layer-j polynomial zj(x), the verifier selects a challenge β and queries
from the prover zj(c), zj(−c) to compute zj+1(c) until zk(x), j ≤ log2(degCP) becomes
constant.

The non-interactive version of the presented protocol can be easily built obtaining the Fiat-
Shamir heuristics.

The soundness of the presented STARK protocol follows from the impossibility to commit
any possible evaluation of the forgery CP(x) over evaluation domain E and simultaneously
prove that CP(x) is a low-degree polynomial by the FRI protocol. Since the size of E is ρ times
bigger then the maximum allowed polynomial degree (that directly depends on the size of the
trace), the attacker either can’t construct such a polynomial or can’t construct a low-degree
polynomial, so a valid low-degree composition polynomial can only be obtained using a valid
trace.

6

Example. Finally, let’s overview the first steps of the ZK-STARK protocol applied to our
Fibonacci example:

1. The protocol defines the public constraints such as 2023-th element of sequence, field
Fp, etc.

2. The prover generates the trace a where a0 = 1, a1 = 3141592, ai = a2i−1+ a
2
i−2, evalu-

ates the trace polynomial f (x) over the evaluation domain and sends it’s commitments
to the verifier.

3. The verifier selects challenges α0, α1, α2 ∈ F and shares them with the prover.
4. The prover evaluates the composition polynomial CP(x) over evaluation domain and

sends it’s commitments to the verifier.
5. The verifier selects random i ∈ [8192− 16], puts c = 5 · hi and sends it to the prover.
6. The prover responds with the f (c), f (gc), f (g2c),CP(c),CP(−c) and corresponding

Merkle proofs to them.
7. The verifier checks Merkle proofs and the evaluation of CP(c) by evaluating the con-

straint polynomials p0(c), p1(c), p2(c).
8. The prover and the verifier go through the FRI protocol for z0(x) = CP(x) until
zi(x), i ∈ [12] becomes constant.

0.4 Protocol security
Most of the existing versions of the STARK protocol leverage on several optimizations to

achieve better proving and verification time. The key point here is that each FRI query check
adds log2(ρ) bits of security, so we can skip some of these checks if the security level is already
satisfied. One more optimization is to include a proof-of-work computation into the protocol
that should be done before FRI with dependency on the committed values. It can be useful
because the verification of the proof-of-work is less expensive then the verification of the FRI
step while still increases the computation cost for the malicious prover.

More precisely, let’s assume that the desired security level of the protocol is λ. First of all,
we obviously have to use a proper collision-resistant hash function with 2λ bits output. Then,
according to the StarkWare’s definition of the STARK protocol, the resulting security is defined
as follows:

λ ≥ min{δ + log2(ρ) · s, log2(|F|)} − 1

where δ – number of the proof-of-work bits, s – number of the FRI queries.

Example. If the protocol is deployed over 256-bit field and the domain ratio is ρ = 8, to
achieve the 128 bit security we can for example execute 33 FRI query and evaluate 29
proof-of-work bits: min{29 + 3 · 33, 256} = 128.

7

	Introduction
	STARK-friendly fields
	Protocol definition
	Trace, evaluation domain and commitment
	FRI protocol

	Protocol security

