
Bulletproofs++. Construction and Examples

Oleg Fomenko, Mike Sokolov
Distributed Lab

February, 2024

Contents

1 Introduction 2

2 Preliminaries 2

3 Weight norm linear argument 3
3.1 Definition . 3
3.2 Vector reduction . 3
3.3 Protocol description . 4

4 Arithmetic circuit 4
4.1 General approach . 5
4.2 Witness commitments . 5
4.3 Circuit equations . 6
4.4 Linear combinations . 7
4.5 Circuit commitment . 7
4.6 Polynomials . 8

5 Reciprocal range proofs 10
5.1 Reciprocal circuit . 11

6 Implementation 12

A Sample circuit 13

B Binary range proof 13

Abstract

This document introduces some clarification and corrections to Bulletproofs++ [Eag+23] paper. It
briefly describes the fundamental protocol “weight norm linear argument”, the improved circuits proto-
col, and the reciprocal range proof protocol. The main contribution of this work is to introduce a fixed
version of arithmetic circuit protocol based on the discrete logarithm setting. Reading the original paper
before is recommended to understand better the principles described in this work. Also, the original
paper contains completeness and soundness proofs that can be easily transformed to be applied to our
protocol.

Special thanks to Alex Kurbatov for his kind review.

1

1 Introduction

Bulletproofs++ protocol presented in [Eag+23] as an improvement to the BP [Bun+17] and BP+ [Chu+20].
Previous versions of the protocol have been developed primarily for zero-knowledge range proofs based on
discrete logarithm problems. Bulletproofs++ extends their opportunities and allows proving arithmetic
circuits without transferring extra commitments, as in BP and BP+. It consists of three main parts: weight
norm linear argument protocol, arithmetic circuit protocol, and high-level protocols that can be built on top
of them (for example - range proofs).

Weight norm linear argument protocol is a recursive algorithm for zero-knowledge proving that the user
knows two vectors that satisfy some relation on public parameters. That protocol uses the vector reduction
approach, allowing us to move from proving knowledge of N-sized vectors to N/2-sized vectors. The main
difference from the similar protocols in BP and BP+ is that the weight norm argument keeps the equality
relation on vectors: if the original vectors were equal, the reduced vectors would be equal as well.

The high-level idea of the circuit protocol is to combine arithmetic circuit relation into two vectors using
challenges from the verifier and, after — prove the knowledge of them using weight norm linear argument
protocol. This protocol is constructed in such a way that it will not be possible to make a structure of weight
norm linear argument if the circuit conditions are not satisfied. Also, the Bulletproofs++ protocol defines the
custom representation of arithmetic circuits. The original paper [Eag+23] describes an approach to format
any BP-compatible circuit [Bun+17] to the BP++ style. So, because we can represent any arithmetic circuit
in the BP circuit representation and we also can represent any BP circuit in BP++ — this gives us the
availability to represent any arithmetic circuit in BP++.

2 Preliminaries

The section is partially taken from [Eag+23] because of the similar definitions and same scope.

We denote by G a cyclic group of prime order p written additively, which is, in practice, typically a
subgroup of an elliptic curve. We write group elements in G with capital letters and scalars in F = Fp with
lower case letters. Vectors are written with bold letters and matrices with capital letters. These can be
distinguished from G elements from context.

Namely, we define a group element G ∈ G and vectors of group elements G ∈ GNm and H ∈ G9+Nv . All
of them are independently generated and public. We denote the vector of all zeros by 0 and the vector of
all ones by 1.

Slices are defined using subscript as vi: with meaning that we take elements from i till the end of the
vector and v:i with meaning that we take elements from the beginning to i − 1 inclusive. To access a slice
within a vector, we write (vk:)i = vk+i.

We write the inner product of two vectors using angle brackets:

⟨x,y⟩ =
n∑

i=0

xi · yi (1)

Sometimes we will write this inner product as a multiplication of vectors with ∗ or without it to simplify
the equations. Also, we define a weight inner product as an inner product with a subscript to denote
weighting by powers of the subscript:

⟨x,y⟩µ =

n∑
i=0

xi · yi · µi+1 (2)

Inner products are defined for any vectors of quantities that can be multiplied, i.e. scalars and scalars or
scalars and group elements. If the vectors in multiplications have different sizes, the smaller vector will

2

be appended with zeros from the corresponding cyclic group. The norm of a vector refers to its self-inner
product and uses the same subscripting convention for weights:

|x|2µ = ⟨x,x⟩µ (3)

We write concatenation of vectors using || and tensor product of vectors using ⊗. Also, we use the
diag(µ)−1 notation for diagonal matrix with µ−i, i ∈ {0, 1, 2...} on the main diagonal. The size of this
matrix can be defined from context. We denote the vector of powers from µ0 to µn−1 by en(µ).

We decompose vectors into subvectors of even (indices 0, 2, ...) and odd (indices 1, 3, ...) components,
instead of left and right halves as in BP, written as [a]0 and [a]1 respectively. This transformation simplifies
certain parts of the protocol and may help with locality in implementations. BP and BP+ can easily be
modified to use even and odd halves, as can BP++ to use left and right halves.

3 Weight norm linear argument

Like BP and BP+, BP++ in [Eag+23] introduces the new version of recursive proving of knowledge of
committed vectors that satisfy some conditions. This fundamental basis is called weight norm linear
argument (WNLA). The following section briefly describes how WNLA works according to the original
document without any changes.

3.1 Definition

The WNLA defines the following relation and the proof scheme for it:

• For the public vector c ∈ Fl and value µ ∈ F

• Public G ∈ G,G ∈ Gn,H ∈ Gl

• And private vectors l ∈ Fl,n ∈ Fn

• Let’s define the commitment vG+ ⟨l,H⟩+ ⟨n,G⟩, where v = ⟨c, l⟩+ |n|2µ

• Then, using the weight norm linear argument we can prove the knowledge of private vectors for the
given commitment.

3.2 Vector reduction

In the BP’s [Bun+17] linear argument proof during vectors reduction we are moving from x,y to a half-
length x′,y′, but unfortunately it does not keep the relation of initial vectors equivalence: if x = y then
x′ ̸= y′. The WNLA fixes that, by defining the new rules of vector reduction for the given challenges γ and
ρ, such that ρ2 = µ:

x′ = ρ−1[x]0 + γ[x]1 (4)

y′ = ρ−1[y]0 + γ[y]1 (5)

It is easy to check that the following equations allow us to represent the reduced vectors’ weight multiplication
through the original vectors’ weight multiplication:

vx = ρ−1(⟨[x]0, [y]1⟩µ2 + ⟨[x]1, [y]0⟩µ2) (6)

vr = ⟨[x]1, [y]1⟩µ2 (7)

⟨x′,y′⟩µ2 = ⟨x,y⟩µ + vxγ + vr(γ
2 − 1). (8)

3

3.3 Protocol description

Now, there are 4 products that we have to reduce: |n|2µ, ⟨n,G⟩, ⟨c, l⟩ and ⟨l,H⟩. Because n takes part in
weight multiplication (weight norm) we also have to modify the relation for G to match our specific reduced
vector, and for the c, l, H vectors we have to use the unweighted reduction (without ρ−1) because they are
used only in default multiplications.

v′ = |n′|2µ2 + ⟨c′, l′⟩ (9)

l′ = [l]0 + γ[l]1 (10)

c′ = [c]0 + γ[c]1 (11)

H ′ = [H]0 + γ[H]1 (12)

n′ = ρ−1[n]0 + γ[n]1 (13)

G′ = ρ[G]0 + γ[G]1 (14)

Using that definition we can define the following equations and commitments:

vx = 2ρ−1⟨[n]0, [n]1⟩µ2 + ⟨[c]0, [l]1⟩+ ⟨[c]1, [l]0⟩ (15)

vr = |[n]1|2µ2 + ⟨[c]1, [l]1⟩ (16)

X = vxG+ ⟨[l]1, [H]0⟩+ ⟨[l]0, [H]1⟩+ ⟨ρ[n]1, [G]0⟩+ ⟨ρ−1[n]0, [G]1⟩ (17)

R = vrG+ ⟨[l]1, [H]1⟩+ ⟨[n]1, [G]1⟩ (18)

Then, it becomes able to construct a commitment in reduced vectors for both verifier and prover:

C + γX + (γ2 − 1)R = v̂G+ ⟨l′,H ′⟩+ ⟨n′,G′⟩ (19)

Finally, we have discussed all protocol peculiarities and now are able to define the algorithm: prover calculates
commitments X,R and sends them to the verifier, after that the verifier shares the challenge and both can
move to the next iteration with ρ′ = µ, µ′ = µ2. The original paper [Eag+23] notes that recursive iterations
with vector reduction can optimize protocol until |l| + |n| < 6. So, once that boundary has been reached,
the prover can just send current l′ and n′ vectors to the verifier for the final check (that they satisfy the
current commitment). Protocol completeness follows from the protocol definition and protocol soundness
follows from the linear independence of the 1, γ, γ2 − 1 polynomials in the weight multiplication reduction.
Check out the original paper for the full algorithm description.

4 Arithmetic circuit

The circuit definition lies on the following parameters and values:

• Public matrices Wl ∈ FNl×Nw ,Wm ∈ FNm×Nw ,

• Public vectors al ∈ FNl ,am ∈ FNm ,

• Two public boolean flags fl, fm

• Public point G ∈ G, vectors of points G ∈ GNm ,H ∈ G9+Nv ,

• Commitments to the circuit input witness V ∈ Gk, where k - number of witness vectors,

• Circuit input witness vi ∈ FNv , i ∈ [0, k − 1],

• Private commitment blinding sv,i ∈ F,

4

• And more private witness wL,wR ∈ FNm ,wO ∈ FNO .

Additionally, we define witnesses vectors w and wv as:

w = wL||wR||wO (20)

wv = v0||v1||...||vk−1 (21)

The arithmetic circuit representation from [Eag+23] should satisfy the following relation:

Wlw + flwv + al = 0 (22)

Wmw + fmwv + am = wL ◦wR (23)

where the input commitment to witness is:

Vi = Com(vi, sv,i) = vi,0G+ sviH0 + ⟨H9:,vi,1:⟩ (24)

It is necessary to highlight that Wl should be perceived as consisting of three components related to r, l,o
witness (such as Wlw = Wl,RwR+Wl,LwR+Wl,OwO). It’s also become obvious that Nw = Nm+Nm+NO

and Nl = Nv ∗ k.

4.1 General approach

To combine the circuit definition into one equation we can use a general principle in cryptography (for
example in ZK-SNARKs) - combine multiple constraints into one by using challenges, so let’s represent the
arithmetic circuit definition using challenges λ and µ as:

0 = eNl
(λ)T ∗ (Wlw + flwv + al) + ⟨wL,wR⟩µ (25)

−µ ∗ eNm(µ)T ∗ (Wmw + fmwv + am)

It’s easy to observe that the first part of the equation eNl
(λ)T ∗ (Wlw+ flwv +al) is the same as multiplied

by (1, λ, λ2, ...) vector Wlw+flwv+al and the second part ⟨wL,wR⟩µ−µ∗eNm
(µ)T ∗ (Wmw+fmwv+am)

is derived from wL ◦wR = Wmw + fmwv + am by multiplying on (1, µ, µ2, ...) vector.
According to the described solution in the original document [Eag+23] we will try to represent our circuit

in the following function from given challenge T :

f(T) = v(T)− ⟨c(T), l(T)⟩ − |n(T)|2µ = 0 (26)

It will allow us to use weight norm linear argument proof in the final stage of arithmetic circuit protocol to
prove that we know such l(T) and n(T) that satisfies norm linear argument commitment.

The goal that we have to achieve is to construct such commitment C = vG+ ⟨l,H⟩+ ⟨n,G⟩ where the
v = v(T) = ⟨c(T), l(T)⟩ + |n(T)|2µ derived from f(T) and l = l(T),n = n(T). Note that v = v(T) =
⟨c(T), l(T)⟩ + |n(T)|2µ equation will be satisfied only in case when witness satisfies the arithmetic circuit
definition.

4.2 Witness commitments

Firstly, let’s consider to group all value terms (terms that depends on circuit witness) in the same T i

coefficient in f ′(T) function. According to the original document it will be the T 3 term. So, the sub-goal
for now is to construct function f ′(T) = v(T) − ⟨ĉl(T), l̂(T)⟩ − |n(T)|2µ in which the coefficient near T 3

will be zero in case when the circuit equation satisfied. All the other terms will be nullified by moving from
ĉl(T), l̂(T) to c(T), l(T).

5

Let’s start with the definition of the witness (R, L, O) and blinding commitments (S). The CL, CR, CO

and CS commitments that will be defined as following:

CX = ⟨rX ||lX ,H⟩+ ⟨nX ,G⟩, X ∈ {L,R,O, S} (27)

The rX ∈ F9 vectors will be defined later when we will consider to nullify the entire f(T) function. Also
nR = wR and nL = wL, and the other lX ∈ FNv and nX ∈ FNm vectors will be a mapping of wO witness
vector by the special injective mapping function Ψ : Ψ(x, j) = i, where x ∈ {lO, lL, lR,nO}, j is a index of
element in vector x and i is an corresponding index of wO.

Using such mapping we also have to map the circuit public Wm,Wl matrix into the Ma,t,X , a ∈ {l,m}, t ∈
{l, n}, X ∈ {L,R,O}. The goal is to achieve the following equation:

Waw =
∑

X∈{L,R,O}

Ma,l,X lX +Ma,n,XnX (28)

Because we have nL = wL and nR = wR then Ma,n,L = Wa,L and Ma,n,R = Wa,R. Other columns will be
mapped using also the Ψ function applied to the columns of Wa,O. Column j of matrix Ma,t,X equals to the
column i of Wa,O if i = Ψ(tX , j), t ∈ {l, n} and to the zero column otherwise. For example: Ml,l,L j column
will be equal to column i of Wl,O if Ψ(lL, j) = i and in Mm,n,R j column will be equal to column i of Wm,O

if Ψ(nR, j) = i.
For the simple circuits the Ψ can be defined as a mapping of all elements of wO into the nO or lL but

also depends on your conditions.

4.3 Circuit equations

Let’s turn back to the initial circuit equation, to describe clearly some following definitions:

0 = eNl
(λ)T ∗ (Wlw + flwv + al) + ⟨wL,wR⟩µ

−µ ∗ eNm(µ)T ∗ (Wmw + fmwv + am)

Dealing with it we have to define the linear combinations of witness as well as linear combination of circuit
parameters based on input challenges µ and λ. Let’s define the λ′ and µ′ vectors:

λ′ = eNl
(λ)T (29)

µ′ = µ ∗ eNm
(µ)T (30)

So, now we have:

0 = λ′ ∗Wlw + λ′ ∗ flwv + λ′ ∗ al + ⟨wL,wR⟩µ
−µ′ ∗Wmw − µ′ ∗ fmwv − µ′ ∗ am

Let’s substitute the Wl ∗w and Wm ∗w multiplications:

0 = λ′
∑

X∈{L,R,O}

(Ml,l,XlX +Ml,n,XnX) + λ′flwv + λ′ ∗ al + ⟨wL,wR⟩µ

−µ′
∑

X∈{L,R,O}

(Mm,l,XlX +Mm,n,XnX)− µ′fmwv − µ′am

If we group the lX and nX coefficients we will have:

0 =
∑

X∈{L,R,O}

(λ′Ml,l,X − µ′Mm,l,X)lX + λ′flwv + λ′al + ⟨wL,wR⟩µ

+
∑

X∈{L,R,O}

(λ′Ml,n,X − µ′Mm,n,X)nX − µ′fmwv − µ′am

6

Let’s define the following vectors to simplify the equation:

cn,X = (λ′Ml,n,X − µ′Mm,n,X)(µ−1diag(µ)−1) (31)

cl,X = λ′Ml,l,X − µ′Mm,l,X (32)

The resulting equation that we have is:

0 = flλ
′wv − fmµ′wv + λ′al − µ′am + ⟨wL,wR⟩µ (33)

+
∑

X∈{L,R,O}

(⟨cl,X , lX⟩+ ⟨cn,X ,nX⟩µ)

4.4 Linear combinations

As we’ve already defined the linear combination of the circuit public parameters we have to define the
corresponding linear combination of witness vector wv = concat(v) and its commitment Vi. The linear
combination function will be defined as:

lcomb(i) = 2(fl ∗ λNv∗i + fm ∗ µNv∗i+1) (34)

The linear combination of witness will be the vector:

v̂ =

i<k∑
i=0

lcomb(i) ∗ vi (35)

The linear combination of private commitment blinding values will be the value:

ŝ =

i<k∑
i=0

lcomb(i) ∗ svi (36)

And the corresponding commitment combination will be the point:

V̂ =

i<k∑
i=0

lcomb(i) ∗ Vi (37)

4.5 Circuit commitment

Now, using additional challenge δ from verifier let’s define the commitment:

C = T−1 ∗ CS − δ ∗ CO + T ∗ CL − T 2 ∗ CR + T 3 ∗ V̂ (38)

Let’s expand the commitments computations:

C = T−1⟨(rS ||lS),H⟩+ T−1⟨nS ,G⟩ − δ⟨(rO||lO),H⟩ − δ⟨nO,G⟩
+T ⟨(rL||lL),H⟩+ T ⟨nL,G⟩ − T 2⟨(rR||lR),H⟩ − T 2⟨nR,G⟩

+T 3
i<k∑
i=0

lcomb(i) ∗ Vi

And group the coefficients G, H:

C = ⟨T−1(rS ||lS)− δ(rO||lO) + T (rL||lL)− T 2(rR||lR),H⟩+

+⟨T−1nS − δnO + TnL − T 2nR,G⟩+ T 3
i<k∑
i=0

lcomb(i) ∗ Vi

7

For clarity define the vector ŝv = (ŝ, 0, ..., 0)||v̂1: with dimension 9 +Nv − 1. So the final equation is:

C = ⟨T−1(rS ||lS)− δ(rO||lO) + T (rL||lL)− T 2(rR||lR) + T 3ŝv,H⟩
+⟨T−1nS − δnO + TnL − T 2nR,G⟩+ T 3v̂0G

It’s obvious that there is something the same to the structure of weight norm linear argument (WNLA),
where:

l(T) = T−1(rS ||lS)− δ(rO||lO) + T (rL||lL)− T 2(rR||lR) + T 3ŝv (39)

n̂(T) = T−1nS − δnO + TnL − T 2nR (40)

v̂(T) = T 3v̂0 (41)

4.6 Polynomials

It is easy to see, that the defined commitment requires some changes to be used in weight norm linear
argument. Let’s define some equations that will be used in the f ′(T) definition. For the defined V̂ there
will be some additional terms that will appear during inner multiplication in case we have both fl = 1 and
fm = 1. To deal with it we have to define additional vector that will compensate them. This vector is
described in paragraph 5.2.2 of the original document [Eag+23]:

λlm = flfm(µeNv (λ)⊗ ek(µ
Nv) + eNv (µ)⊗ ek(λ

Nv)) (42)

The final λ and µ will be:

λ = (λ′)T − λlm (43)

µ = (µ′)T (44)

And some polynomials that will be used in the final f ′(T) function (the correctness of defined function can
be proved by T 3 term calculation — it should be fully derived from circuit equation):

pn(T) = δ−1T 3cn,O − T 2cn,L + Tcn,R (45)

ps(T) = |pn(T)|2µ + 2T 3(⟨λ,al⟩ − ⟨µ,am⟩) (46)

ĉl(T) = 2(δ−1T 3cl,O − T 2cl,L + Tcl,R) + fmµeNv (µ)1: − fleNv (λ)1: (47)

n(T) = pn(T)+ n̂(T) (48)

Finally, we can define the f ′(T) function according to the vectors in raw WNLA commitment definition from
the previous section:

f ′(T) = ps(T) + v̂(T)− ⟨ĉl(T), l̂(T)⟩ − |n(T)|2µ (49)

where the l̂(T) = T−1lS − δlO + T lL − T 2lR + T 3v̂1:. It is simple to check that in the f ′(T) function
coefficient near T 3 will be equal to:

2 ∗ (fl ∗ λ′wv − fm ∗ µ′wv + λ′al − µ′am + ⟨wL,wR⟩µ
+

∑
X∈{L,R,O}

(cl,X ∗ lX + cn,X ∗ nX))

that is equal to 0 in case when the circuit conditions satisfied.
The last thing that we have to deal with is to nullify the whole f(T) function, and then we will be able

to express v(t) from it and use the WNLA proof. As we’ve said earlier the f(T) = f ′(T)− g(T) and now we
are able do define the g(T):

g(T) = ⟨ĉr(T), r(T)⟩ (50)

8

where ĉr(T) = (1, βT−1, βT, βT 2, βT 3, βT 4, βT 5, βT 6, βT 7) for the challenge β and r(T) = T−1rS − δrO +
TrL − T 2rR + T 3(ŝ, 0, ..., 0).

The rS vector, as a part of commitment CS should be defined before receiving the T challenge from
verifier, in such way that g(T) will nullify all T i coefficients in function f ′(T). Let’s name f ′[X] the
coefficient in f ′(T) near TX . Then, rS vector can be obtained by solving the equation f ′[x] = ⟨ĉr, r(t)⟩[x]
for unknown rS . For the T

3 coefficient we have special equation because f ′[x] is already zero, but additional
T 3ŝ appears from r(T) function T 3ŝ term (and T 3V̂ in the commitment). That is why we have to define
rS,5 = −β−1ŝ.

rS,0 = f ′[−1] + βδrO,1

rS,1 = β−1f ′[−2]

rS,2 = β−1(f ′[0] + δrO,0)− rL,1

rS,3 = β−1(f ′[1]− rL,0) + rR,1 + δrO,2

rS,4 = β−1(f ′[2] + rR,0)− rL,2 + δrO,3

rS,5 = −β−1ŝ

rS,6 = β−1f ′[4] + rR,3 − rL,4 + δrO,5

rS,7 = β−1f ′[5] + rR,4 − rL,5 + δrO,6

rS,8 = β−1f ′[6] + rR,5 − rL,6 + δrO,7

That definition also imposes restrictions on the rX vectors: rO,4 = rL,3 = rR,2 = 0 and rR,6: = 0, rO,8 = 0,
rL,7: = 0. Other rX,i, X ∈ {L,R,O} shold be selected randomly.

So, for the final function f we have the following equations and commitment that can be used in WNLA
proof:

v(T) = ps(T) + v̂(T) (51)

l(T) = T−1(rS ||lS)− δ(rO||lO) + T (rL||lL)− T 2(rR||lR) + T 3ŝv (52)

n(T) = pn(T)+ n̂(T) (53)

c(T) = ĉr(T)||ĉl(T) (54)

f(T) = v(T)− ⟨c(T), l(T)⟩ − |n(T)|2µ (55)

C(T) = ps(T)G+ ⟨pn(T),G⟩+ T−1CS − δCO + TCL − T 2CR + T 3V̂ (56)

= v(T)G+ ⟨l(T),H⟩+ ⟨n(T),G⟩

If the circuit conditions satisfied then f(T) = 0, so:

v(T)− ⟨c(T), l(T)⟩ − |n(T)|2µ = 0 (57)

v(T) = ⟨c(T), l(T)⟩+ |n(T)|2µ (58)

That satisfies the commitment C(T) to be used in WNLA.

9

Algorithm 1 Arithmetic circuit protocol

Input: G,G,H,Wl,Wm,al,am, fl, fm, V, sv,wL,wR,wO,v

Require: Circuit equations satisfied

• P calculates: CX , lX , rX , nX for X ∈ {L,R,O}
• V → P : ρ, β, λ, δ

• Both calculates: µ = ρ2,λ,µ, Ma,t,X and ct,X where a ∈ {l,m}, t ∈ {l, n}, X ∈ {L,R,O}
• P selects random lS , nS and calculates rS , CS using polynomials and f ′(T) function coefficients to
nullify target f(T) function.

• P → V : CS

• V → P : τ

• P calculates l(τ),n(τ)

• Both calculates polynomials ps(τ),pn(τ), ĉr(τ), ĉl(τ) and C(τ), c(τ)

• Run Weight Norm Linear Argument protocol with input: c = c(τ), C = C(τ), l = l(τ),n = n(τ)

5 Reciprocal range proofs

After describing the arithmetic circuit protocol it becomes possible to construct range proofs on top of it.
The obvious protocol for the binary system is to prove that every committed digit is a bit by checking that
digiti ∗ (digiti − 1) = 0. You can find description of this circuit in the Appendix. In general, for “b”-base

system it corresponds to the check that every digit is a root of polynomial
∏b−1

i=0 (x − i). It’s possible to
construct such proof using arithmetic circuits or just a weight norm linear argument protocol, but anyway,
such proofs will not be more efficient then their analogs in BP[Bun+17] and BP+[Chu+20]. The BP++
[Eag+23] introduces reciprocal range proofs - the another way to check that every committed digit belongs
to the set of valid base values. This section, in turn, describes the straightforward range proof protocol based
on reciprocal argument unlike more complicated protocol from the the original paper.

According to the original paper, let’s construct a set A of pairs (mi, vi) of values and their multiplicities
(it can contain repeated pairs). We will say that A set vanishes if for the every v, sum of its multiplicities
accross all pairs equals to 0. Using the function

f(X) =
∑

(m,v)∈A

m

X − v
(59)

we can check that A vanishes by calculating f(α) with for a random selected α with overwhelming probability.
Then, for the digits vector d and base b we can construct A as:

A = (−1, di)
i<n
i=0 ∪ (mj , j)

j<b
j=0 (60)

where mj is a total multiplicity for the base digit j — how many times j appears in d. Now, if the A set
vanishes then all digits satisfies range [0, b). And, we can suspect a zero-knowledge protocol to check that A
vanishes: commit to all digits d and multiplicities m, choose a challenge α and commit to the values:

ri =
1

α+ di
(61)

Then, to show that di is a valid base digit prove that:

ri ∗ (di + α) = 1 (62)

i<n∑
i=0

ri =

j<b∑
j=0

mj

α+ j
(63)

10

5.1 Reciprocal circuit

Let’s consider to describe the arithmetic circuit for the equations above. Using challenge received from
verifier we will consider to generate witness and corresponding circuit matrices. For the given base b and
number length n we can describe the following commitments to the value t with st blinding:

CV = t ∗G+ st ∗H0 (64)

where t = ⟨en(b),d⟩ and di ∈ [0, b). Then, after receiving the challenge α from verifier we can commit to the

ri =
1

α+ di
with sr blinding:

CR = sr ∗H0 + ⟨r,H9:⟩ (65)

The total commitment for the circuit will be:

CV + CR = t ∗G+ (st + sr) ∗H0 + ⟨r,H9:⟩ (66)

where the circuit witness is v = t||r with corresponding blinding st + sr.
According to the described proving scheme, we have to prove that ri ∗ (di + α) = 1 for our committed

witness. It’s obvious to use circuit equation that contains witness multiplication wL ◦ wR to perform ri ∗ di
check. Then, using am = 1, fm = 0,wL = d,wR = r,wO = m we can construct circuit matrix Wm(α) for
the given challenge X in such way that Wm(α) ∗ w = −α ∗ r (by setting −α on on the main diagonal of
corresponding part of matrix that will be multiplied on wR part of w vector). So, in the Wm(α)w + am =
wL ◦wR circuit equation every row will encode check for −α ∗ ri + 1 = di ∗ ri.

To encode check for the reciprocal sum we will use Wl(α)w + flwv + al = 0 circuit equation with
fl = 1 and al = 0 parameters. The Wl(α) matrix in this equation have to nullify the witness vector wv, so
Wl(α) ∗ w = −(t||r). To nullify t in the first row we can encode check that committed value corresponds to
the committed digits by encoding of en(b) in the first n elements of Wl(α)0 row (that will be multiplied on
the wL = d in the Wl(α) ∗ w). For the other ri values in the wv we can perform check of the reciprocal

sum
∑i<n

i=0 ri −
∑j<b

j=0 mj(α+ j)−1 = 0 in a way that all of the last n elements of Wl(α)w +wv will contain
this equation. To do that we can set 1 in the all cells except of main diagonal of corresponding sub-matrix
(let’s call it E0) that will be multiplied on wR and −(α + j)−1 on main diagonal of the wO multiplication
sub-matrix:

Wl(α) =

∣∣∣∣∣∣
en(b) 0 0

O E0 − E

α+ j

∣∣∣∣∣∣ (67)

Finally, we’ve defined the circuit and witness vectors so it becomes possible to run the arithmetic circuit
protocol. Note, that reciprocal argument gives different proof size for different bases. For the most popular
case uint64 base b = 16 is the most optimal to generate proofs.

Note, that in the described implementation multiplicities vector m committed directly in the wO witness
vector that refers to the “shared” reciprocal argument from the original paper [Eag+23]. In that case all wO

elements will be mapped into lL by the Ψ partition function, so lL vector should be able to accommodate
all this elements. It imposes additional restriction Nv >= NO which means that n+ 1 >= b.

11

Algorithm 2 Reciprocal range proof protocol

Input: Same as in Arithmetic Circuit protocol and t, n, b, st, sr

Require: t ∈ [0, bn)

• P calculates: d,m, CV

• P → V : CV

• V → P : α

• P calculates: r, CR

• Both calculates: Wm(α),Wl(α)

• Run Arithmetic Circuit protocol with witness wL = d,wR = r,wO = m,v = (t||r), sv = st+sr and
circuit Wl = Wl(α),Wm = Wm(α), fm = 0, fl = 1,am = 1,al = 0, Nm = n,NO = b,Nv = 1 + n, k =
1

6 Implementation

To demonstrate the performance of the described arithmetic circuit protocol we’ve implemented it using
Go language over BN256 Curve and using Rust language over Bitcoin secp256k1 Curve. Implementation
contains the weight norm linear argument protocol, arithmetic circuit protocol and reciprocal range-proof
protocol that were described in this paper. Repositories can be found here:

• Go: https://github.com/distributed-lab/bulletproofs

• Rust: https://github.com/distributed-lab/bp-pp

Besides the described protocols it also contains several test cases on simple circuits: x+ y = r, x ∗ y = z and
binary range proof. Check the Appendix for more information about the test circuits.

In conclusion, described and implemented approach has 2G points advantage over existing BP[Bun+17]
and BP+[Chu+20] protocols in proving of one 64-bit value and this advantage will increase for more values
per proof.

Protocol Elements in G Elements in F
BP 16 5
BP+ 15 3
BP++ (Ours) 13 3

Table 1: Range proof for 64-bit value

References

[Bun+17] Benedikt Bunz et al. Bulletproofs: Short Proofs for Confidential Transactions and More. 2017.

[Chu+20] Heewon Chung et al. Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger.
2020. url: https://eprint.iacr.org/2020/735.pdf.

[Eag+23] Liam Eagen et al. Bulletproofs++: Next Generation Confidential Transactions via Reciprocal Set
Membership Arguments. 2023. url: https://eprint.iacr.org/2022/510.pdf.

12

https://github.com/cloudflare/bn256
https://en.bitcoin.it/wiki/Secp256k1
https://github.com/distributed-lab/bulletproofs
https://github.com/distributed-lab/bp-pp
https://eprint.iacr.org/2020/735.pdf
https://eprint.iacr.org/2022/510.pdf

A Sample circuit

Now, let’s examine how to prove simple set of equations in the BP++ arithmetic circuit protocol. For the
public constants r, z we want to prove that we know such x, y:

x+ y = r (68)

x ∗ y = z (69)

It’s obvious that we will have wL = [x],wR = [y],wv = [x, y] and wO = [x ∗ y, x + y]. Then w =
[x, y, x ∗ y, x+ y].

Firstly, lets encode a multiplication constraint into the Wmw + fmwv + am = wL ◦wR circuit relation.
The Wm matrix in our case will have dimension Nm×Nw = 1×4 and be perceived as vector where: 0 position
corresponds to the w0 value (x), 1 position to the w1 value (y), etc. So, to encode our x ∗ y multiplication
we can just set fm = 0,am = [0] and Wm = [0, 0, 1, 0]. Now, we have:

Wmw + fmwv + am = wL ◦wR (70)

∣∣0 0 1 0
∣∣ ∗

∣∣∣∣∣∣∣∣
x
y

x ∗ y
x+ y

∣∣∣∣∣∣∣∣+ 0 ∗wv + 0 =
∣∣x∣∣ ◦ ∣∣y∣∣ (71)

Next, we have to encode an addition constraint into the Wlw + flwv + al = 0 circuit equation. Here
we will check the following conditions: wO contains r and z public values (z value is partially checked in
previous equation) and x + y equals to public r. In our equation we already have the flwv = [x, y] vector.
Let’s consider to separate our checks into the corresponding vector positions. In the first position we will
check that x+ y − r = 0 and then, in the second that x ∗ y − y + y + z = 0. So, we will have:

Wl =

∣∣∣∣0 1 0 0
0 −1 1 0

∣∣∣∣ (72)

That corresponds to taking y in the first position of resulting Wlw vector and x∗y−y in the second position.
Then, if we take al = [−r,−z], we will have:

Wlw + flwv + al = 0 (73)

∣∣∣∣0 1 0 0
0 −1 1 0

∣∣∣∣ ∗
∣∣∣∣∣∣∣∣

x
y

x ∗ y
x+ y

∣∣∣∣∣∣∣∣+
∣∣∣∣xy
∣∣∣∣+ ∣∣∣∣−r

−z

∣∣∣∣ = 0 (74)

∣∣∣∣ y + x− r
x ∗ y − y + y − z

∣∣∣∣ = 0 (75)

B Binary range proof

The binary range proof protocol as simple as previous proof of addition and multiplication. Imagine we have
the x = ⟨(20, 21, 22, 23), (x0, x1, x2, x3)⟩ in 4-bits setting and the goal is to prove that value committed in x
vector of bits lies in [0, 24) range. To achieve that we will prove that every committed value in vector is a
bit (equals to 0 or 1) by checking that xi ∗ (xi − 1) = 0.

Let’s split this equation into two more simple equations that we will encode into circuit:

xi ∗ xi = ai (76)

ai − xi = 0 (77)

13

We will encode the multiplication check (xi ∗ xi = ai) into the Hadamard product circuit equation.

wL = (x0, x1, x2, x3) (78)

wR = (x0, x1, x2, x3) (79)

wO = (a0, a1, a2, a3) (80)

w = wL||wR||wO = (x0, x1, x2, x3, x0, x1, x2, x3, a0, a1, a2, a3) (81)

v =

∣∣∣∣∣∣∣∣
x0 a0
x1 a1
x2 a2
x3 a3

∣∣∣∣∣∣∣∣ (82)

wv = (x0, a0, x1, a1, x2, a2, x3, a3) (83)

For the Wm matrix we should note that it contains three parts related to the x0..3, x4..7, a8..11 parts of w
vector. Then, to satisfy the circuit relations we should select the following Wm form:

Wm,x = [0] (84)

Wm,a =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ (85)

Wm =
∣∣Wm,x Wm,x Wm,a

∣∣ (86)

You can easily check that this definition satisfies our circuit relation (with fm = 0,al = 0): Wmw+ fmwv +
am = wL ◦wR.

For the Wl matrix we should select values to check the xi − ai = 0. With fl = 1 we will also have the xi

term during addition that we have to nullify. Note, that Wl as Wm matrix also contains three parts related
to the x, x, a parts of w vector.

Wl,x1
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
−1 0 0 0
0 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 −1 0
0 0 0 −1
0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(87)

Wl,x2
= [0] (88)

Wl,a = [0] (89)

Wl =
∣∣Wl,x1 Wl,x2 Wl,a

∣∣ (90)

This definition allows us to nullify the xi term and also provide the check that −xi+ai = 0 and also, satisfy
the Wlw + flwv + al = 0 circuit equation.

14

	Introduction
	Preliminaries
	Weight norm linear argument
	Definition
	Vector reduction
	Protocol description

	Arithmetic circuit
	General approach
	Witness commitments
	Circuit equations
	Linear combinations
	Circuit commitment
	Polynomials

	Reciprocal range proofs
	Reciprocal circuit

	Implementation
	Sample circuit
	Binary range proof

