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Preface

Over the last two or three decades, elliptic curves have been playing an in-
creasingly important role both in number theory and in related fields such as
cryptography. For example, in the 1980s, elliptic curves started being used
in cryptography and elliptic curve techniques were developed for factorization
and primality testing. In the 1980s and 1990s, elliptic curves played an impor-
tant role in the proof of Fermat’s Last Theorem. The goal of the present book
is to develop the theory of elliptic curves assuming only modest backgrounds
in elementary number theory and in groups and fields, approximately what
would be covered in a strong undergraduate or beginning graduate abstract
algebra course. In particular, we do not assume the reader has seen any al-
gebraic geometry. Except for a few isolated sections, which can be omitted
if desired, we do not assume the reader knows Galois theory. We implicitly
use Galois theory for finite fields, but in this case everything can be done
explicitly in terms of the Frobenius map so the general theory is not needed.
The relevant facts are explained in an appendix.

The book provides an introduction to both the cryptographic side and the
number theoretic side of elliptic curves. For this reason, we treat elliptic curves
over finite fields early in the book, namely in Chapter 4. This immediately
leads into the discrete logarithm problem and cryptography in Chapters 5, 6,
and 7. The reader only interested in cryptography can subsequently skip to
Chapters 11 and 13, where the Weil and Tate-Lichtenbaum pairings and hy-
perelliptic curves are discussed. But surely anyone who becomes an expert in
cryptographic applications will have a little curiosity as to how elliptic curves
are used in number theory. Similarly, a non-applications oriented reader could
skip Chapters 5, 6, and 7 and jump straight into the number theory in Chap-
ters 8 and beyond. But the cryptographic applications are interesting and
provide examples for how the theory can be used.

There are several fine books on elliptic curves already in the literature. This
book in no way is intended to replace Silverman’s excellent two volumes [109],
[111], which are the standard references for the number theoretic aspects of
elliptic curves. Instead, the present book covers some of the same material,
plus applications to cryptography, from a more elementary viewpoint. It is
hoped that readers of this book will subsequently find Silverman’s books more
accessible and will appreciate their slightly more advanced approach. The
books by Knapp [61] and Koblitz [64] should be consulted for an approach to
the arithmetic of elliptic curves that is more analytic than either this book or
[109]. For the cryptographic aspects of elliptic curves, there is the recent book
of Blake et al. [12], which gives more details on several algorithms than the

ix
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X

present book, but contains few proofs. It should be consulted by serious stu-
dents of elliptic curve cryptography. We hope that the present book provides
a good introduction to and explanation of the mathematics used in that book.
The books by Enge [38], Koblitz [66], [65], and Menezes [82] also treat elliptic
curves from a cryptographic viewpoint and can be profitably consulted.
Notation. The symbols Z, F,, Q, R, C denote the integers, the finite
field with ¢ elements, the rationals, the reals, and the complex numbers,
respectively. We have used Z,, (rather than Z/nZ) to denote the integers
mod n. However, when p is a prime and we are working with Z, as a field,
rather than as a group or ring, we use F,, in order to remain consistent with
the notation F,. Note that Z, does not denote the p-adic integers. This
choice was made for typographic reasons since the integers mod p are used
frequently, while a symbol for the p-adic integers is used only in a few examples
in Chapter 13 (where we use O,). The p-adic rationals are denoted by Q,.
If K is a field, then K denotes an algebraic closure of K. If R is a ring, then
R* denotes the invertible elements of R. When K is a field, K* is therefore
the multiplicative group of nonzero elements of K. Throughout the book,
the letters K and E are generally used to denote a field and an elliptic curve
(except in Chapter 9, where K is used a few times for an elliptic integral).
Acknowledgments. The author thanks Bob Stern of CRC Press for
suggesting that this book be written and for his encouragement, and the
editorial staff at CRC Press for their help during the preparation of the book.
Ed Eikenberg, Jim Owings, Susan Schmoyer, Brian Conrad, and Sam Wagstaff
made many suggestions that greatly improved the manuscript. Of course,
there is always room for more improvement. Please send suggestions and
corrections to the author (lew@math.umd.edu). Corrections will be listed on
the web site for the book (www.math.umd.edu/~lcw/ellipticcurves.html).
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Preface to the Second Edition

The main question asked by the reader of a preface to a second edition is
“What is new?” The main additions are the following:

1.

2.

8.

A chapter on isogenies.

A chapter on hyperelliptic curves, which are becoming prominent in
many situations, especially in cryptography.

A discussion of alternative coordinate systems (projective coordinates,
Jacobian coordinates, Edwards coordinates) and related computational
issues.

A more complete treatment of the Weil and Tate-Lichtenbaum pairings,
including an elementary definition of the Tate-Lichtenbaum pairing, a
proof of its nondegeneracy, and a proof of the equality of two common
definitions of the Weil pairing.

Doud’s analytic method for computing torsion on elliptic curves over Q.

Some additional techniques for determining the group of points for an
elliptic curve over a finite field.

A discussion of how to do computations with elliptic curves in some
popular computer algebra systems.

Several more exercises.

Thanks are due to many people, especially Susan Schmoyer, Juliana Belding,
Tsz Wo Nicholas Sze, Enver Ozdemir, Qiao Zhang,and Koichiro Harada for
helpful suggestions. Several people sent comments and corrections for the first
edition, and we are very thankful for their input. We have incorporated most
of these into the present edition. Of course, we welcome comments and correc-
tions for the present edition (lew@math.umd.edu). Corrections will be listed
on the web site for the book (www.math.umd.edu/~lcw /ellipticcurves.html).

X
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Suggestions to the Reader

This book is intended for at least two audiences. One is computer scientists
and cryptographers who want to learn about elliptic curves. The other is for
mathematicians who want to learn about the number theory and geometry of
elliptic curves. Of course, there is some overlap between the two groups. The
author of course hopes the reader wants to read the whole book. However, for
those who want to start with only some of the chapters, we make the following
suggestions.

Everyone: A basic introduction to the subject is contained in Chapters 1,
2, 3, 4. Everyone should read these.

I. Cryptographic Track: Continue with Chapters 5, 6, 7. Then go to
Chapters 11 and 13.

II. Number Theory Track: Read Chapters 8, 9, 10, 11, 12, 14, 15. Then
go back and read the chapters you skipped since you should know how the
subject is being used in applications.

I1I. Complex Track: Read Chapters 9 and 10, plus Section 12.1.

xiii
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Chapter 1

Introduction

Suppose a collection of cannonballs is piled in a square pyramid with one ball
on the top layer, four on the second layer, nine on the third layer, etc. If the
pile collapses, is it possible to rearrange the balls into a square array?

Figure 1.1
A Pyramid of Cannonballs

If the pyramid has three layers, then this cannot be done since there are
1+ 4 + 9 = 14 balls, which is not a perfect square. Of course, if there is only
one ball, it forms a height one pyramid and also a one-by-one square. If there
are no cannonballs, we have a height zero pyramid and a zero-by-zero square.
Besides theses trivial cases, are there any others? We propose to find another
example, using a method that goes back to Diophantus (around 250 A.D.).

If the pyramid has height x, then there are

1)(2z + 1
12492 4 g2 4.y g2 = TEF )6(x+ )

balls (see Exercise 1.1). We want this to be a perfect square, which means

that we want to find a solution to

s w(x+1)(2x+1)
o 6
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2 CHAPTER 1 INTRODUCTION

0

Figure 1.2
y*=x(z+1)(2r+1)/6

in positive integers x, y. An equation of this type represents an elliptic curve.
The graph is given in Figure 1.2.

The method of Diophantus uses the points we already know to produce new
points. Let’s start with the points (0,0) and (1,1). The line through these two
points is y = x. Intersecting with the curve gives the equation

1)(2 1 1 1 1

Rearranging yields
3 1
3_Y,..2 I
x 57T + 5% 0.

Fortunately, we already know two roots of this equation: x = 0 and x = 1.
This is because the roots are the z-coordinates of the intersections between
the line and the curve. We could factor the polynomial to find the third root,
but there is a better way. Note that for any numbers a, b, ¢, we have

(z —a)(x—b)(x—c) =2 - (a+ b+ c)ax? + (ab + ac + be)x — abe.

Therefore, when the coefficient of 2 is 1, the negative of the coefficient of z?
is the sum of the roots.
In our case, we have roots 0,1, and x, so

3

0+1 = —.

+1+x 5
Therefore, x = 1/2. Since the line was y = z, we have y = 1/2, too. It’s hard
to say what this means in terms of piles of cannonballs, but at least we have

found another point on the curve. In fact, we automatically have even one
more point, namely (1/2,—1/2), because of the symmetry of the curve.
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INTRODUCTION 3

Let’s repeat the above procedure using the points (1/2,—1/2) and (1,1).
Why do we use these points? We are looking for a point of intersection
somewhere in the first quadrant, and the line through these two points seems
to be the best choice. The line is easily seen to be y = 3z — 2. Intersecting
with the curve yields

2 _ ac(:c+1)(2:r;—|—1)'

3r — 2
(32— 2) :
This can be rearranged to obtain
51
$3—7$2+:0

(By the above trick, we will not need the lower terms.) We already know the
roots 1/2 and 1, so we obtain

! + 1+ ol

—_ Tr = —

2 2’

or x = 24. Since y = 3z — 2, we find that y = 70. This means that
12+ 2% 432+ -+ + 247 = 707

If we have 4900 cannonballs, we can arrange them in a pyramid of height 24,
or put them in a 70-by-70 square. If we keep repeating the above procedure,
for example, using the point just found as one of our points, we’ll obtain
infinitely many rational solutions to our equation. However, it can be shown
that (24, 70) is the only solution to our problem in positive integers other than
the trivial solution with = 1. This requires more sophisticated techniques
and we omit the details. See [5].

Here is another example of Diophantus’s method. Is there a right triangle
with rational sides with area equal to 57 The smallest Pythagorean triple
(3,4,5) yields a triangle with area 6, so we see that we cannot restrict our
attention to integers. Now look at the triangle with sides (8, 15, 17). This
yields a triangle with area 60. If we divide the sides by 2, we end up with
a triangle with sides (4, 15/2, 17/2) and area 15. So it is possible to have
nonintegral sides but integral area.

Let the triangle we are looking for have sides a, b, ¢, as in Figure 1.3. Since
the area is ab/2 = 5, we are looking for rational numbers a, b, ¢ such that

a2+ 0% =2, ab = 10.

A little manipulation yields

a-+b 2 a? + 2ab + b2 2+ 20 (C)2+5
2 4 4 ’

a—b 2_a2—2ab+b2_02—20_(g)2_5
2 n 4 4 '
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4 CHAPTER 1 INTRODUCTION

Figure 1.3

Let x = (¢/2)2. Then we have
r—5=(a—-10)/2)?* and z+5=((a+b)/2)>
We are therefore looking for a rational number x such that
r—9o, x, T+95

are simultaneously squares of rational numbers. Another way to say this
is that we want three squares of rational numbers to be in an arithmetical
progression with difference 5.

Suppose we have such a number x. Then the product (z — 5)(z)(z + 5) =
23 — 252 must also be a square, so we need a rational solution to

y? =23 — 25z

As above, this is the equation of an elliptic curve. Of course, if we have such
a rational solution, we are not guaranteed that there will be a corresponding
rational triangle (see Exercise 1.2). However, once we have a rational solution
with y # 0, we can use it to obtain another solution that does correspond to
a rational triangle (see Exercise 1.2). This is what we’ll do below.
For future use, we record that
(a—b)(c)(a+b) (a®—b%)c

0= (3) " v=(@-5)a)+a)"? = T

There are three “obvious” points on the curve: (—5,0),(0,0), (5,0). These
do not help us much. They do not yield triangles and the line through any
two of them intersects the curve in the remaining point. A small search yields
the point (—4,6). The line through this point and any one of the three other
points yields nothing useful. The only remaining possibility is to take the
line through (—4,6) and itself, namely, the tangent line to the curve at the
(—4,6). Implicit differentiation yields

,  3x?—25 23

2yy’ = 3% — 25, =,
vy T Yy 5 B
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INTRODUCTION 53

The tangent line is therefore

23 41

V=t t g

Intersecting with the curve yields

23 41\?
- ) =43 -9
(12$+ 3> T o,

23\ 2
3_ —_ 2 o« s e —
x (12> r“ 4+ 0.

Since the line is tangent to the curve at (—4,6), the root © = —4 is a double
root. Therefore the sum of the roots is

23\ 2
—d—d4z= (2 .
+x (12)

We obtain # = 1681/144 = (41/12)%2. The equation of the line yields y =
62279/1728.
Since = = (¢/2)?, we obtain ¢ = 41/6. Therefore,

which implies

62279  (a®* —Db*)c  41(a® - b?)
e T
This yields
1519
2 2
_p2 = 27
@ 36

Since
a® +b* = c* = (41/6)?,

we solve to obtain a? = 400/9 and b*> = 9/4. We obtain a triangle (see
Figure 1.4) with

20 41
a=—, b=—-, c=—,
3 2 6
which has area 5. This is, of course, the (40,9, 41) triangle rescaled by a factor

of 6.

There are infinitely many other solutions. These can be obtained by suc-
cessively repeating the above procedure, for example, starting with the point
just found (see Exercise 1.4).

The question of which integers n can occur as areas of right triangles with
rational sides is known as the congruent number problem. Another for-
mulation, as we saw above, is whether there are three rational squares in
arithmetic progression with difference n. It appears in Arab manuscripts
around 900 A.D. A conjectural answer to the problem was proved by Tunnell
in the 1980s [122]. Recall that an integer n is called squarefree if n is not
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41
6 3
2

20

3

Figure 1.4

a multiple of any perfect square other than 1. For example, 5 and 15 are
squarefree, while 24 and 75 are not.

CONJECTURE 1.1
Letn be an odd, squarefree, positive nteger. Then n can e expressad as the
area of a right triangk w ith rational sides if and only if the num ber of nteger
solutions to

202 + 1?2 + 822 =n

with 2 even equals the num ber of solutions with z odd.

Letn = 2m with m odd, squarefree, and positive. Then n can be expressed
as the area of a right trianglk with rational sides if and only if the num ber of
Integer solutions to

42 + 2 + 822 =m

with z even equals the num ber of Integer solutions with z odd.

Tunnell [122] proved that if there is a triangle with area n, then the number
of odd solutions equals the number of even solutions. However, the proof of
the converse, namely that the condition on the number of solutions implies the
existence of a triangle of area n, uses the Conjecture of Birch and Swinnerton-
Dyer, which is not yet proved (see Chapter 14).

For example, consider n = 5. There are no solutions to 2z2 + y? + 822 = 5.
Since 0 = 0, the condition is trivially satisfied and the existence of a triangle
of area 5 is predicted. Now consider n = 1. The solutions to 2z%+y?+82% = 1
are (z,y,2) = (0,1,0) and (0, —1,0), and both have z even. Since 2 # 0, there
is no rational right triangle of area 1. This was first proved by Fermat by his
method of descent (see Chapter 8).

For a nontrivial example, consider n = 41. The solutions to 2z2 43?4 82% =
41 are

(£4, £3,0), (£4, 1, £1), (£2, £5, +1), (£2, +1, £2), (0, +3, £2)
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(all possible combinations of plus and minus signs are allowed). There are
32 solutions in all. There are 16 solutions with z even and 16 with z odd.
Therefore, we expect a triangle with area 41. The same method as above,
using the tangent line at the point (—9,120) to the curve y? = 23 — 412z,
yields the triangle with sides (40/3, 123/20, 881/60) and area 41.

For much more on the congruent number problem, see [64].

Finally, let’s consider the quartic Fermat equation. We want to show that

a* + bt =t (1.1)

has no solutions in nonzero integers a, b, c. This equation represents the easiest
case of Fermat’s Last Theorem, which asserts that the sum of two nonzero
nth powers of integers cannot be a nonzero nth power when n > 3. This
general result was proved by Wiles (using work of Frey, Ribet, Serre, Mazur,
Taylor, ...) in 1994 using properties of elliptic curves. We'll discuss some of
these ideas in Chapter 15, but, for the moment, we restrict our attention to
the much easier case of n = 4. The first proof in this case was due to Fermat.
Suppose a* + b* = ¢* with a # 0. Let

b + 2 b(b? + c?)

r=2—735—, y=4

a a3

(see Example 2.2). A straightforward calculation shows that

y? = a° — 4z,

In Chapter 8 we’ll show that the only rational solutions to this equation are

(:ﬂ,y) = (070)7 (270)7 (_270)'

These all correspond to b = 0, so there are no nontrivial integer solutions of
(1.1).

The cubic Fermat equation also can be changed to an elliptic curve. Suppose
that a® + b% = ¢ and abc # 0. Since a® + b> = (a + b)(a® — ab + b?), we must
have a + b # 0. Let

Then
y? = a3 — 432.

(Where did this change of variables come from? See Section 2.5.2.) It can be
shown (but this is not easy) that the only rational solutions to this equation
are (x,y) = (12,£36). The case y = 36 yields a—b = a+b, so b = 0. Similarly,
y = —36 yields a = 0. Therefore, there are no solutions to a® 4+ b = ¢ when
abc # 0.
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Exercises

1.1

1.2

1.3

1.4

1.5

Use induction to show that

1249224324 ... 4 22 =

for all integers x > 0.

(a) Show that if z, y are rational numbers satisfying y? = 23 — 252 and
x is a square of a rational number, then this does not imply that
x4+ 5 and x — 5 are squares. (Hint: Let x = 25/4.)

(b) Let n be an integer. Show that if z,y are rational numbers sat-
isfying y? = 23 — n%z, and = # 0, £n, then the tangent line to
this curve at (z,y) intersects the curve in a point (z1,y;) such that
x1, 1 — n, 1 + n are squares of rational numbers. (For a more
general statement, see Theorem 8.14.) This shows that the method
used in the text is guaranteed to produce a triangle of area n if we
can find a starting point with = # 0, £+n.

Diophantus did not work with analytic geometry and certainly did not
know how to use implicit differentiation to find the slope of the tangent
line. Here is how he could find the tangent to y?> = 23 — 25z at the
point (—4,6). It appears that Diophantus regarded this simply as an
algebraic trick. Newton seems to have been the first to recognize the
connection with finding tangent lines.

(a) Let x = —4 +t, y = 6 + mt. Substitute into y? = 2% — 25x. This
yields a cubic equation in ¢ that has t = 0 as a root.

(b) Show that choosing m = 23/12 makes t = 0 a double root.

(¢) Find the nonzero root ¢ of the cubic and use this to produce =z =

1681/144 and y = 62279/1728.

Use the tangent line at (x,y) = (1681/144, 62279/1728) to find another
right triangle with area 5.

Show that the change of variables z; = 12z + 6, y; = 72y changes the
curve y? = x5 — 36x1 to y? = z(z + 1)(2z + 1) /6.
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Chapter 2

The Basic Theory

2.1 Weierstrass Equations

For most situations in this book, an elliptic curve E is the graph of an

equation of the form
y? = 2% + Az + B,

where A and B are constants. This will be referred to as the Weierstrass
equation for an elliptic curve. We will need to specify what set A, B, z, and
y belong to. Usually, they will be taken to be elements of a field, for example,
the real numbers R, the complex numbers C, the rational numbers Q, one of
the finite fields F,, (= Z,) for a prime p, or one of the finite fields F,, where
g = p* with k > 1. In fact, for almost all of this book, the reader who is
not familiar with fields may assume that a field means one of the fields just
listed. If K is a field with A, B € K, then we say that F is defined over
K. Throughout this book, E and K will implicitly be assumed to denote an
elliptic curve and a field over which F is defined.

If we want to consider points with coordinates in some field L O K, we
write E(L). By definition, this set always contains the point co defined later
in this section:

E(L) ={oc}U{(z,y) € L x L|y* = 2° + Az + B}.

It is not possible to draw meaningful pictures of elliptic curves over most
fields. However, for intuition, it is useful to think in terms of graphs over the
real numbers. These have two basic forms, depicted in Figure 2.1.

The cubic y? = 23 — z in the first case has three distinct real roots. In the
second case, the cubic y? = 23 4+ z has only one real root.

What happens if there is a multiple root? We don’t allow this. Namely, we
assume that

4A% +27B% #£0.

If the roots of the cubic are r1, 72, r3, then it can be shown that the discrimi-
nant of the cubic is

((7“1 - 7“2)(7“1 - 7“3)(7“2 — T3))2 = —(4A3 + 2732)
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10 CHAPTER 2 THE BASIC THEORY

(a) y?=a3—2x b) y¥*=23+z

Figure 2.1

Therefore, the roots of the cubic must be distinct. However, the case where the
roots are not distinct is still interesting and will be discussed in Section 2.10.

In order to have a little more flexibility, we also allow somewhat more
general equations of the form

Y2+ arzy + asy = 23 + ax® + agx + ag, (2.1)

where a1, ..., ag are constants. This more general form (we’ll call it the gen-
eralized Weierstrass equation) is useful when working with fields of char-
acteristic 2 and characteristic 3. If the characteristic of the field is not 2, then
we can divide by 2 and complete the square:

a1r  as\2 a2 ai1a a2
(y+%+§) :x3+<a2+j)x2+(a4+%)x+(Z‘o’—ka(;),

which can be written as
2 3 ! 2 / /
Yi =7+ ax” + ayx + ag,

with y1 =y + a12/2 + a3/2 and with some constants a), alj, ag. If the charac-
teristic is also not 3, then we can let 27 = = + a//3 and obtain

y%:a:i’-l—A:cl—i—B,

for some constants A, B.
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SECTION 2.1 WEIERSTRASS EQUATIONS 11

In most of this book, we will develop the theory using the Weierstrass
equation, occasionally pointing out what modifications need to be made in
characteristics 2 and 3. In Section 2.8, we discuss the case of characteristic 2 in
more detail, since the formulas for the (nongeneralized) Weierstrass equation
do not apply. In contrast, these formulas are correct in characteristic 3 for
curves of the form y? = 23 + Ax + B, but there are curves that are not of
this form. The general case for characteristic 3 can be obtained by using the
present methods to treat curves of the form y? = z® + Cx? + Az + B.

Finally, suppose we start with an equation

cy’ =da® +ax+b
with ¢, d # 0. Multiply both sides of the equation by c¢3d? to obtain
(Pdy)? = (cdx)® + (ac’d)(cdx) + (bc*d?).
The change of variables
y1 = Ady, x1 = cdx

yields an equation in Weierstrass form.

Later in this chapter, we will meet other types of equations that can be
transformed into Weierstrass equations for elliptic curves. These will be useful
in certain contexts.

For technical reasons, it is useful to add a point at infinity to an elliptic
curve. In Section 2.3, this concept will be made rigorous. However, it is
easiest to regard it as a point (0o, 00), usually denoted simply by oo, sitting
at the top of the y-axis. For computational purposes, it will be a formal
symbol satisfying certain computational rules. For example, a line is said to
pass through oo exactly when this line is vertical (i.e., x =constant). The
point oo might seem a little unnatural, but we will see that including it has
very useful consequences.

We now make one more convention regarding co. It not only is at the top of
the y-axis, it is also at the bottom of the y-axis. Namely, we think of the ends
of the y-axis as wrapping around and meeting (perhaps somewhere in the back
behind the page) in the point co. This might seem a little strange. However,
if we are working with a field other than the real numbers, for example, a
finite field, then there might not be any meaningful ordering of the elements
and therefore distinguishing a top and a bottom of the y-axis might not make
sense. In fact, in this situation, the ends of the y-axis do not have meaning
until we introduce projective coordinates in Section 2.3. This is why it is best
to regard oo as a formal symbol satisfying certain properties. Also, we have
arranged that two vertical lines meet at co. By symmetry, if they meet at the
top of the y-axis, they should also meet at the bottom. But two lines should
intersect in only one point, so the “top oo” and the “bottom co” need to be
the same. In any case, this will be a useful property of oo.

© 2008 by Taylor & Francis Group, LLC



12 CHAPTER 2 THE BASIC THEORY

2.2 The Group Law

As we saw in Chapter 1, we could start with two points, or even one point,
on an elliptic curve, and produce another point. We now examine this process
in more detail.

|

|

I

A

P3I

|

|

:

F B,
|

|

|

/& :
|

Pl |
:

|

:

|

b3}

|

|

|

|

Figure 2.2
Adding Points on an Elliptic Curve

Start with two points

Py = (z1,y1), Po»=(22,y2)

on an elliptic curve E given by the equation y? = 23 + Az + B. Define a new
point Pj3 as follows. Draw the line L through P; and P,. We’ll see below that
L intersects E in a third point P;. Reflect Pj across the z-axis (i.e., change
the sign of the y-coordinate) to obtain P;. We define

P+ P, = P;.

Examples below will show that this is not the same as adding coordinates of
the points. It might be better to denote this operation by P; +g P», but we
opt for the simpler notation since we will never be adding points by adding
coordinates.

Assume first that P, # P, and that neither point is co. Draw the line L
through P; and P». Its slope is

_ Y2 — 1

m .
To — X1
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SECTION 2.2 THE GROUP LAW 13

If 1 = zo, then L is vertical. We’ll treat this case later, so let’s assume that
x1 # x2. The equation of L is then

y=m(x —z1)+y1.
To find the intersection with F, substitute to get
(m(z — x1) +11)° = 2° + Az + B.
This can be rearranged to the form
0=a3—m?z%+.-..

The three roots of this cubic correspond to the three points of intersection of
L with E. Generally, solving a cubic is not easy, but in the present case we
already know two of the roots, namely x; and x5, since P; and P, are points
on both L and E. Therefore, we could factor the cubic to obtain the third
value of x. But there is an easier way. As in Chapter 1, if we have a cubic
polynomial 23 + ax? + bx + ¢ with roots r, s, ¢, then

P 4ar +br+ce=(x—r)(z—s)(zr—t)=2>—(r+s+t)z*+---

Therefore,
r+s+t=—a.

If we know two roots r, s, then we can recover the third as t = —a — r — s.
In our case, we obtain
Tr = m2 — 1 — T2
and
y=m(x —z1)+y1.

Now, reflect across the x-axis to obtain the point P3 = (z3,y3):
— 2 _
r3 =m- — I — T2, Y3 = m(ry — x3) — Y1

In the case that 1 = x5 but y; # y9, the line through P; and P is a vertical
line, which therefore intersects E in oco. Reflecting oo across the x-axis yields
the same point oo (this is why we put oo at both the top and the bottom of
the y-axis). Therefore, in this case P + P, = 00.

Now consider the case where P; = P, = (x1,y1). When two points on
a curve are very close to each other, the line through them approximates a
tangent line. Therefore, when the two points coincide, we take the line L
through them to be the tangent line. Implicit differentiation allows us to find
the slope m of L:

@_Bxf—l—A

dy 2
20— =3 A =
Yo T+4, soom dx 21
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14 CHAPTER 2 THE BASIC THEORY

If y1 = 0 then the line is vertical and we set P; + P> = 00, as before. (Technical
point: if y; = 0, then the numerator 323+ A # 0. See Exercise 2.5.) Therefore,
assume that y; # 0. The equation of L is

y=m(r — 1)+ y1,

as before. We obtain the cubic equation

0=2a—m?z*+---.
This time, we know only one root, namely x1, but it is a double root since L
is tangent to E' at P;. Therefore, proceeding as before, we obtain

r3 =m? — 2z, ys = m(x1 — T3) — Y1.

Finally, suppose P, = oo. The line through P; and oo is a vertical line
that intersects F in the point P; that is the reflection of P; across the z-axis.
When we reflect P] across the z-axis to get P; = P, + P», we are back at P;.
Therefore

P 1+ 00 = P1

for all points P; on E. Of course, we extend this to include oo 4+ oo = oo.
Let’s summarize the above discussion:

GROUP LAW

Let F ke an elliptic curve defined by 42 = 23 + Ar+ B. Let P; = (z1,y1) and
Py, = (:l?g,yg) ke pointson F with P, P» # o0.Define P+ Py, = P3 = (:l?g,yg)
as folbws:

1. Ifxy # a9, then

2 _ Y2
T3 =m° —x1 — To, ys = m(xr; —x3) —y1, wherem = "—"".
To — I
2.Ifa:lzxgbutyl#yg,ﬂﬂ.enPl—kszoo.
3.IfP1:P2andy17é0,then
3x2 4+ A
zs = m? — 2z, y3 = m(x1 — x3) — Y1, wherem:;—+.
W

4. P, =Py, andy; =0, then P, + P> = .

M oreover, define
P+oco=P

forallpoints P on E'.
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SECTION 2.2 THE GROUP LAW 15

Note that when P; and P> have coordinates in a field L that contains A and
B, then P; + P, also has coordinates in L. Therefore E(L) is closed under
the above addition of points.

This addition of points might seem a little unnatural. Later (in Chapters 9
and 11), we’ll interpret it as corresponding to some very natural operations,
but, for the present, let’s show that it has some nice properties.

THEOREM 2.1
T he addition of points on an elliptic curve E satidfies the follow Ing properties:

1. (commuativity) P + Po =P, + P, orall P, P, on E.
2. (existence of identity) P+ o0 = P forallpoints P on F.

3. (existence of inverses) G iven P on F, there exists P’ on F with P+ P’ =
00 . This point P’ willusually be denoted — P

4. (aSSOCJatE\EIty) (P1+P2)+P3:P1—|—(P2—|—P3> bra]lPl,Pg,Pg on F.

In other words, the points on F form an additive abelian group with co as the
identity elem ent.

PROOF The commutativity is obvious, either from the formulas or from
the fact that the line through P; and P, is the same as the line through P»
and P;. The identity property of oo holds by definition. For inverses, let P’
be the reflection of P across the z-axis. Then P + P’ = cc.

Finally, we need to prove associativity. This is by far the most subtle and
nonobvious property of the addition of points on E. It is possible to define
many laws of composition satisfying (1), (2), (3) for points on E, either simpler
or more complicated than the one being considered. But it is very unlikely
that such a law will be associative. In fact, it is rather surprising that the
law of composition that we have defined is associative. After all, we start
with two points P; and P, and perform a certain procedure to obtain a third
point P, + P». Then we repeat the procedure with P; + P> and P3 to obtain
(P + P,) + P3. If we instead start by adding P, and Pj, then computing
Py + (P3 + P3), there seems to be no obvious reason that this should give the
same point as the other computation.

The associative law can be verified by calculation with the formulas. There
are several cases, depending on whether or not P, = P,, and whether or not
P; = (P, + P,), etc., and this makes the proof rather messy. However, we

prefer a different approach, which we give in Section 2.4. |

Warning: For the Weierstrass equation, if P = (z,y), then —P = (z, —y).
For the generalized Weierstrass equation (2.1), this is no longer the case. If
P = (x,y) is on the curve described by (2.1), then (see Exercise 2.9)

—P = (z, —a1x — a3z — y).
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16 CHAPTER 2 THE BASIC THEORY

Example 2.1
The calculations of Chapter 1 can now be interpreted as adding points on
elliptic curves. On the curve

5o z(x+1)2x+1)

we have
(0,0)+ (1,1) = (5, —=), (=,—=)+(1,1) = (24,-70).

On the curve
y? = 2% — 25z,

we have

2(—4,6) = (—4,6) + (—4,6) = ( 144 1728

We also have

(0,0) + (=5,0) = (5,0), 2(0,0) = 2(=5,0) = 2(5,0) = cc.

1681 62279)

[

The fact that the points on an elliptic curve form an abelian group is be-
hind most of the interesting properties and applications. The question arises:
what can we say about the groups of points that we obtain? Here are some
examples.

1. An elliptic curve over a finite field has only finitely many points with
coordinates in that finite field. Therefore, we obtain a finite abelian
group in this case. Properties of such groups, and applications to cryp-
tography, will be discussed in later chapters.

2. If E is an elliptic curve defined over Q, then F(Q) is a finitely generated
abelian group. This is the Mordell-Weil theorem, which we prove in
Chapter 8. Such a group is isomorphic to Z" & F for some r > 0
and some finite group F. The integer r is called the rank of E(Q).
Determining r is fairly difficult in general. It is not known whether r
can be arbitrarily large. At present, there are elliptic curves known with
rank at least 28. The finite group F' is easy to compute using the Lutz-
Nagell theorem of Chapter 8. Moreover, a deep theorem of Mazur says
that there are only finitely many possibilities for F', as E ranges over all
elliptic curves defined over Q.

3. An elliptic curve over the complex numbers C is isomorphic to a torus.
This will be proved in Chapter 9. The usual way to obtain a torus is as
C/L, where L is a lattice in C. The usual addition of complex numbers
induces a group law on C/L that corresponds to the group law on the
elliptic curve under the isomorphism between the torus and the elliptic
curve.
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SECTION 2.2 THE GROUP LAW 17

Figure 2.3
An Elliptic Curve over C

4. If E is defined over R, then E(R) is isomorphic to the unit circle S?
or to S' @ Z,. The first case corresponds to the case where the cubic
polynomial 23 + Az + B has only one real root (think of the ends of the
graph in Figure 2.1(b) as being hitched together at the point oo to get a
loop). The second case corresponds to the case where the cubic has three
real roots. The closed loop in Figure 2.1(a) is the set S' & {1}, while the
open-ended loop can be closed up using co to obtain the set S* @ {0}.
If we have an elliptic curve F defined over R, then we can consider its
complex points E(C). These form a torus, as in (3) above. The real
points E(R) are obtained by intersecting the torus with a plane. If the
plane passes through the hole in the middle, we obtain a curve as in

Figure 2.1(a). If it does not pass through the hole, we obtain a curve as
in Figure 2.1(b) (see Section 9.3).

If P is a point on an elliptic curve and k is a positive integer, then kP
denotes P + P + --- 4+ P (with k& summands). If £ < 0, then kP = (—P) +
(=P)+---(—P), with |k| summands. To compute kP for a large integer k, it
is inefficient to add P to itself repeatedly. It is much faster to use successive
doubling. For example, to compute 19P, we compute

9P, 4P =2P+2P, 8P =A4P+4P, 16P =8P+8P, 19P = 16P+2P+P.

This method allows us to compute kP for very large k, say of several hundred
digits, very quickly. The only difficulty is that the size of the coordinates of
the points increases very rapidly if we are working over the rational numbers
(see Theorem 8.18). However, when we are working over a finite field, for
example F,, this is not a problem because we can continually reduce mod p
and thus keep the numbers involved relatively small. Note that the associative
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18 CHAPTER 2 THE BASIC THEORY

law allows us to make these computations without worrying about what order
we use to combine the summands.
The method of successive doubling can be stated in general as follows:

INTEGER TIMES A POINT
Let k be a positive integer and ket P ke a point on an elliptic curve. The
follow ing procedure com putes kP .

1. Sartwitha=4k, B=o0,C =P.

2. Ifa iseven, ta=a/2,and et B= B, C =2C'.

3. Ifa iscdd, kta=a—1,and et B=B+C,C =C.
4. Ifa#0, 9o to step 2.

5. Output B.

The output B is kP (see Exercise 2 8).

On the other hand, if we are working over a large finite field and are given
points P and kP, it is very difficult to determine the value of k. This is called
the discrete logarithm problem for elliptic curves and is the basis for the
cryptographic applications that will be discussed in Chapter 6.

2.3 Projective Space and the Point at Infinity

We all know that parallel lines meet at infinity. Projective space allows us
to make sense out of this statement and also to interpret the point at infinity
on an elliptic curve.

Let K be a field. Two-dimensional projective space P2 over K is given by
equivalence classes of triples (z,y, z) with z,y, z € K and at least one of z,y, z
nonzero. Two triples (x1,¥y1,21) and (z2,ys2, 22) are said to be equivalent if
there exists a nonzero element A\ € K such that

(331791,2’1) = (>\l’2, AY2, >\22)-

We write (z1,y1,21) ~ (22,y2,22). The equivalence class of a triple only
depends on the ratios of = to y to z. Therefore, the equivalence class of
(z,y,2) is denoted (x : y : 2).

If (v :y:2)is apoint with z # 0, then (z :y: 2) = (z/z : y/z : 1). These
are the “finite” points in P%. However, if 2 = 0 then dividing by z should
be thought of as giving oo in either the x or y coordinate, and therefore the
points (z : y : 0) are called the “points at infinity” in P%. The point at
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infinity on an elliptic curve will soon be identified with one of these points at
infinity in P%.
The two-dimensional affine plane over K is often denoted

A ={(z,y) € K x K}.

We have an inclusion
Ak — Pk
given by
(x,y) — (z:y:1).

In this way, the affine plane is identified with the finite points in P%. Adding
the points at infinity to obtain P% can be viewed as a way of “compactifying”
the plane (see Exercise 2.10).

A polynomial is homogeneous of degree n if it is a sum of terms of the
form ax'y’z* with @ € K and i + j + k = n. For example, F(x,y,z) =
223 — bryz + Tyz? is homogeneous of degree 3. If a polynomial F' is homoge-
neous of degree n then F(Ax, Ay, \z) = \"F(z,y,z) for all A € K. It follows
that if F' is homogeneous of some degree, and (x1,y1,21) ~ (22,2, 22), then
F(z1,91,21) = 0 if and only if F(x2,y2, 22) = 0. Therefore, a zero of F in P%
does not depend on the choice of representative for the equivalence class, so
the set of zeros of F' in P% is well defined.

If F(x,y, z) is an arbitrary polynomial in x, y, z, then we cannot talk about
a point in P% where F(z,y,z) = 0 since this depends on the representative
(x,v,2) of the equivalence class. For example, let F(z,y,z) = 22 + 2y — 3z.
Then F(1,1,1) = 0, so we might be tempted to say that F' vanishes at (1: 1 :
1). But F(2,2,2) =2and (1:1:1)=(2:2:2). To avoid this problem, we
need to work with homogeneous polynomials.

If f(x,y) is a polynomial in x and y, then we can make it homogeneous by
inserting appropriate powers of z. For example, if f(x,y) = y*> — 2% — Az — B,
then we obtain the homogeneous polynomial F(z,vy,2) = y?z — 2% — Axz? —
Bz3. If F is homogeneous of degree n then

Flz,y.2) = 2" (5, 2)

z

and
f(z,y) = F(z,y,1).

We can now see what it means for two parallel lines to meet at infinity. Let
y =mx + by, Yy =mzx + by

be two nonvertical parallel lines with b; # by. They have the homogeneous
forms

y=mx + bz, y=mzx + byz.
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(The preceding discussion considered only equations of the form f(x,y) = 0
and F(x,y,z) = 0; however, there is nothing wrong with rearranging these
equations to the form “homogeneous of degree n = homogeneous of degree
n.”) When we solve the simultaneous equations to find their intersection, we
obtain

z=0 and y=mx.

Since we cannot have all of x, y, z being 0, we must have x # 0. Therefore, we
can rescale by dividing by x and find that the intersection of the two lines is

(x:mx:0)=(1:m:0).

Similarly, if x = ¢; and * = co are two vertical lines, they intersect in the
point (0 :1:0). This is one of the points at infinity in P%.

Now let’s look at the elliptic curve E given by y? = 23 + Az + B. Its
homogeneous form is y?z = 23 + Azz? + Bz3. The points (z,y) on the
original curve correspond to the points (z : y : 1) in the projective version. To
see what points on E lie at infinity, set z = 0 and obtain 0 = z3. Therefore
x = 0, and y can be any nonzero number (recall that (0 : 0 : 0) is not allowed).
Rescale by y to find that (0:y:0) = (0:1:0) is the only point at infinity on
E. As we saw above, (0: 1 :0) lies on every vertical line, so every vertical line
intersects E at this point at infinity. Moreover, since (0:1:0) = (0: —1:0),
the “top” and the “bottom” of the y-axis are the same.

There are situations where using projective coordinates speeds up compu-
tations on elliptic curves (see Section 2.6). However, in this book we almost
always work in affine (nonprojective) coordinates and treat the point at infin-
ity as a special case when needed. An exception is the proof of associativity
of the group law given in Section 2.4, where it will be convenient to have the
point at infinity treated like any other point (z : y : 2).

2.4 Proof of Associativity

In this section, we prove the associativity of addition of points on an elliptic
curve. The reader who is willing to believe this result may skip this section
without missing anything that is needed in the rest of the book. However,
as corollaries of the proof, we will obtain two results, namely the theorems of
Pappus and Pascal, that are not about elliptic curves but which are interesting
in their own right.

The basic idea is the following. Start with an elliptic curve F and points
P,Q,R on E. To compute — ((P + Q) + R) we need to form the lines ¢; =
PQ, my = 00, P+ Q, and /3 = R, P+ @, and see where they intersect E.
To compute — ((P + (Q + R)) we need to form the lines m; = QR, fy =
00, + R, and m3 = P,Q + R. It is easy to see that the points P;; = £; N'm;
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lie on FE, except possibly for P33. We show in Theorem 2.6 that having the
eight points P;; # P33 on E forces P33 to be on E. Since {3 intersects E at
the points R, P + @, — ((P + Q) + R), we must have — ((P + Q) + R) = Ps3.
Similarly, — (P + (Q + R)) = Ps3, so

—(P+Q)+R)=—-(P+(Q+R)),

which implies the desired associativity.

There are three main technicalities that must be treated. First, some of
the points P;; could be at infinity, so we need to use projective coordinates.
Second, a line could be tangent to E, which means that two P;; could be
equal. Therefore, we need a careful definition of the order to which a line
intersects a curve. Third, two of the lines could be equal. Dealing with these
technicalities takes up most of our attention during the proof.

First, we need to discuss lines in P%. The standard way to describe a line
is by a linear equation: ax + by 4+ cz = 0. Sometimes it is useful to give a
parametric description:

T =au+ bv
Yy = asu ~+ byv (2.2)

z = asu + bgv

where u, v run through K, and at least one of u, v is nonzero. For example, if
a # 0, the line
ar +by+cz=0

can be described by
x=—(b/a)u— (c/a)v,y =u,z=.

Suppose all the vectors (a;,b;) are multiples of each other, say (a;,b;) =
Ai(a1,b1). Then (x,y, z) = x(1, A2, A3) for all u,v such that x # 0. So we get
a point, rather than a line, in projective space. Therefore, we need a condition
on the coefficients a1, ..., b3 that ensure that we actually get a line. It is not
hard to see that we must require the matrix

aq b1
az b
as b3

to have rank 2 (cf. Exercise 2.12).

If (u1,v1) = M usg,vs) for some A € K*, then (uy,v1) and (usg,vs) yield
equivalent triples (z,y, z). Therefore, we can regard (u,v) as running through
points (u : v) in 1-dimensional projective space PL.. Consequently, a line
corresponds to a copy of the projective line P} embedded in the projective
plane.
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We need to quantify the order to which a line intersects a curve at a point.
The following gets us started.

LEMMA 2.2
Let G(u,v) ke a nonzero hom ogeneous polynom izl and ket (ug : vg) € Pk .
Then there exists an nteger k£ > 0 and a polynom a2l H (u, v) with H (ug, vg) #
0 such that
G (u,v) = (vou — uev)* H (u,v).

PROOF  Suppose vg # 0. Let m be the degree of G. Let g(u) = G(u,vp).
By factoring out as large a power of u — ug as possible, we can write g(u) =
(u — ug)*h(u) for some k and for some polynomial h of degree m — k with
h(ug) # 0. Let H(u,v) = (v /vi)h(uvy/v), so H(u,v) is homogeneous of
degree m — k. Then

o = (20 ("2) = 7 s (")

Vo

=(vou — ugv)kH(u, v),

as desired.
If vg = 0, then ug # 0. Reversing the roles of v and v yields the proof in
this case.

Let f(x,y) = 0 (where f is a polynomial) describe a curve C in the affine
plane and let
Tr = a1t+b1,y = a2t~|—b2

be a line L written in terms of the parameter ¢. Let
F(t) = fait + by, ast + by).

Then L intersects C when t = to if f(to) = 0. If (t — to)? divides f(¢),
then L is tangent to C (if the point corresponding to ty is nonsingular. See
Lemma 2.5). More generally, we say that L intersects C' to order n at the
point (x,y) corresponding to t = tq if (t —to)" is the highest power of (¢ —to)
that divides f(¢).

The homogeneous version of the above is the following. Let F(z,y, z) be a
homogeneous polynomial, so F' = 0 describes a curve C in P%. Let L be a
line given parametrically by (2.2) and let

F(u,v) = F(aju + byv, asu + bav, azu + bzv).

We say that L intersects C to order n at the point P = (z¢ : yo : 20)
corresponding to (u : v) = (ug : vo) if (vou — upv)" is the highest power of
(vou — ugv) dividing F'(u,v). We denote this by

OI'dLyp(F) =nN.
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If F is identically 0, then we let ordy, p(F) = co. It is not hard to show that
ordy, p(F') is independent of the choice of parameterization of the line L. Note
that v = vy = 1 corresponds to the nonhomogeneous situation above, and the
definitions coincide (at least when z # 0). The advantage of the homogeneous
formulation is that it allows us to treat the points at infinity along with the
finite points in a uniform manner.

LEMMA 2.3

Let L; and L, ke lineg intersecting n a point P, and, fort = 1,2, kt
L;(z,y,2) be a Iinear polynom ial defining L; . Then ordr, p(L2) = 1 unlkss
Li(z,y,z) = aLs(z,y, z) for some constant «, In which case ordy, p(Ls) =
0.

PROOF When we substitute the parameterization for Ly into Ls(z,y, z),
we obtain I~12, which is a linear expression in u,v. Let P correspond to (ug :
vo). Since Lo(ug,vo) = 0, it follows that Lo(u,v) = B(vou — ugv) for some
constant 5. If 8 # 0, then ordy, p(L2) = 1. If B = 0, then all points on
L, lie on Ly. Since two points in P%( determine a line, and L, has at least
three points (Pl always contains the points (1:0),(0: 1),(1: 1)), it follows
that Ly and Lo are the same line. Therefore L;(z,y,z) is proportional to

LQ(xayvz)' I

Usually, a line that intersects a curve to order at least 2 is tangent to the
curve. However, consider the curve C defined by

F(z,y,2) =y?z —2° = 0.

Let

r=au, y=bu, z=wv

be a line through the point P = (0 : 0 : 1). Note that P corresponds to
(u:v) = (0:1). We have F(u,v) = u?(b*v — a®u), so every line through P
intersects C to order at least 2. The line with b = 0, which is the best choice
for the tangent at P, intersects C' to order 3. The affine part of C' is the curve
y? = 3, which is pictured in Figure 2.7. The point (0,0) is a singularity of
the curve, which is why the intersections at P have higher orders than might
be expected. This is a situation we usually want to avoid.

DEFINITION 2.4 A curveC in P% definedby F(z,y,2) =0 issid to ke
nonsingular at a point P if at Jeast one of the partal derivatives F,, Iy, I,
isnonzero at P.

For example, consider an elliptic curve defined by F(x,y,2) = y?z — 23 —

Azz? — B2z3 = 0, and assume the characteristic of our field K is not 2 or 3.
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We have
F, = =322 — A2?, Fy,=2yz, F,= y? — 2Axz — 3B

Suppose P = (x : y : z) is a singular point. If z = 0, then F, = 0 implies
x =0and F, = 0 implies y = 0, so P = (0 : 0 : 0), which is impossible.
Therefore z # 0, so we may take z = 1 (and therefore ignore it). If F,, = 0,
then y = 0. Since (z : y : 1) lies on the curve,  must satisfy 2%+ Az + B = 0.
If F, = —(322 + A) = 0, then z is a root of a polynomial and a root of its
derivative, hence a double root. Since we assumed that the cubic polynomial
has no multiple roots, we have a contradiction. Therefore an elliptic curve has
no singular points. Note that this is true even if we are considering points with
coordinates in K (= algebraic closure of K). In general, by a nonsingular
curve we mean a curve with no singular points in K.

If we allow the cubic polynomial to have a multiple root z, then it is easy to
see that the curve has a singularity at (x : 0 : 1). This case will be discussed
in Section 2.10.

If P is a nonsingular point of a curve F'(z,y,z) = 0, then the tangent line
at P is

F,(P)x+ Fy(P)y + F.(P)z = 0.

For example, if F(z,y,2) = y*z — 23 — Axz?> — Bz® = 0, then the tangent
line at (xg : yo : 20) is
(—=3z3 — Azd)x + 2y020y + (y§ — 2Ax020 — 3B2z5)z = 0.
If we set zp = z = 1, then we obtain
(=323 — A)x + 2yoy + (y5 — 2Axo — 3B) = 0.
Using the fact that y2 = 23 + Azg + B, we can rewrite this as
(=322 — A)(x — z0) + 2y0(y — o) = 0.

This is the tangent line in affine coordinates that we used in obtaining the
formulas for adding a point to itself on an elliptic curve. Now let’s look at
the point at infinity on this curve. We have (xo : yo : 20) = (0 : 1 : 0). The
tangent line is given by Ox + Oy + 2z = 0, which is the “line at infinity” in P%..
It intersects the elliptic curve only in the point (0 : 1 : 0). This corresponds
to the fact that oo + oo = oo on an elliptic curve.

LEMMA 2.5

Let F(z,y,z) = 0 define a curve C'. If P is a nonsingular point of C', then
there is exactly one line in P?- that intersects C to order at kast 2, and it is
the tangent to C' at P.

PROOF  Let L be a line intersecting C' to order k¥ > 1. Parameterize L
by (2.2) and substitute into F'. This yields F'(u,v). Let (ug : vg) correspond
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to P. Then F = (vou — uov)*H (u,v) for some H(u,v) with H(ug,vo) # 0.
Therefore,

Fou(u,v) = kvo(vou — uov)* Y H(u,v) + (vou — ugv)* Hy, (u, v)
and
Fy(u,v) = —kug(vou — uov)* 1 H (u,v) + (vou — ugv)* H, (u, v).

It follows that k > 2 if and only if Fu(uo,vo) = F’U(uo,vo) =0.
Suppose k > 2. The chain rule yields

Fu :alFx—l—ang—f—ang =0, Fv :blFx-l-bQFy-l-bng =0 (23)

at P. Recall that since the parameterization (2.2) yields a line, the vectors
(a1,a2,a3) and (b1, be, b3) must be linearly independent.

Suppose L’ is another line that intersects C' to order at least 2. Then we
obtain another set of equations

a\Fy + ayFy + a5 F, =0, b F, +b,F, +V0,F, =0

at P.
If the vectors a’ = (a},a},a%) and b’ = (b)), b}, b5) span the same plane in
K3 as a = (a1,as,a3) and b = (by, by, b3), then

a=ca+pBb, b=~a+db

for some invertible matrix (: g) Therefore,

ua’ +vb’ = (ua + vy)a+ (uf +vé)b = uja+v1b

for a new choice of parameters u, v;. This means that L and L’ are the same
line.

If L and L' are different lines, then a, b and a’, b’ span different planes, so
the vectors a, b, a’, b’ must span all of K. Since (Fj, Fy;, F,) has dot product
0 with these vectors, it must be the 0 vector. This means that P is a singular
point, contrary to our assumption.

Finally, we need to show that the tangent line intersects the curve to order
at least 2. Suppose, for example, that F, # 0 at P. The cases where F, # 0
and F, # 0 are similar. The tangent line can be given the parameterization

x:_(Fy/Fm)u_(FZ/Fw)Ua Yy =u, Z =0,

SO
a1 = —Fy/FI, bl = _Fz/F:ca as = 1, b2 = 0, as = 0, b3 =1

in the notation of (2.2). Substitute into (2.3) to obtain

F,=(-F,/F,)F,+F,=0, F,=(—F./F,)F,+F,=0.
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By the discussion at the beginning of the proof, this means that the tangent
line intersects the curve to order k£ > 2.

The associativity of elliptic curve addition will follow easily from the next
result. The proof can be simplified if the points F;; are assumed to be distinct.
The cases where points are equal correspond to situations where tangent lines
are used in the definition of the group law. Correspondingly, this is where
it is more difficult to verify the associativity by direct calculation with the
formulas for the group law.

THEOREM 2.6

Let C(x,y, z) be a hom ageneous cubic polynom ial, and ket C' ke the curve in
P2 descrived by C(z,y,2) = 0. Let {1, {2, {3 and mq, ma, m3 ke lines in P%
such that ¢; # m; for alli,j. Let P;; ke the point of intersection of /; and
m; . Suppose P;; is a nonsingular point on the curve C' for all (4, j) # (3,3).
In addition, we require that if, for some 7, there are k > 2 of the points
P;1, Pio, P;3 equal to the sam e point, then ¢; ntersects C' to order at kast k
at this point. Also, if, for some j, there are k > 2 of the points Py j, Paj, Ps;
equalto the sam e point, then m; Intersects C to order at kast k at this point.
Then P33 also lies on the curve C'.

PROOF Express /1 in the parametric form (2.2). Then C(z,y, z) becomes
C’(u,v). The line ¢ passes through Pyq, Pio, Pi3. Let (ug : vy), (us @ v2), (us :
v3) be the parameters on ¢; for these points. Since these points lie on C, we
have C(u;,v;) =0 for i = 1,2, 3.

Let m; have equation m;(z,y,2) = ajz + bjy + ¢jz = 0. Substituting
the parameterization for ¢; yields m;(u,v). Since P;; lies on m;j, we have
mj(uj,v;) = 0for j =1,2,3. Since ¢; # m; and since the zeros of m; yield the
intersections of ¢; and m;, the function m;(u,v) vanishes only at P;;, so the
linear form m; is nonzero. Therefore, the product m(u, v)me(u,v)ms(u,v)
is a nonzero cubic homogeneous polynomial. We need to relate this product

to C.

LEMMA 2.7

Let R(u,v) and S(u,v) e hom cgeneous polynom ials of degree 3, with S(u, v)
not dentically 0, and suppose there are three points (u; : v;), ¢ = 1,2,3, at
which R and S vanish. M oreover, if k of these points are equal to the sam e
point, we require that R and S vanish to order at kast k at this point (that
is, (viu — uiv)k divides R and S). Then there is a constant o« € K such that
R=aS.

PROOF  First, observe that a nonzero cubic homogeneous polynomial
S(u,v) can have at most 3 zeros (u : v) in P} (counting multiplicities).
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This can be proved as follows. Factor off the highest possible power of v, say
v*. Then S(u,v) vanishes to order k at (1:0), and S(u,v) = v¥Sy(u,v) with
So(1,0) # 0. Since Sp(u,1) is a polynomial of degree 3 — k, the polynomial
So(u, 1) can have at most 3 — k zeros, counting multiplicities (it has exactly
3 — k if K is algebraically closed). All points (u : v) # (1 : 0) can be written
in the form (u : 1), so So(u, v) has at most 3 — k zeros. Therefore, S(u,v) has
at most k + (3 — k) = 3 zeros in PL..

It follows easily that the condition that S(u,v) vanish to order at least k
could be replaced by the condition that S(u,v) vanish to order exactly k.
However, it is easier to check “at least” than “exactly.” Since we are allowing
the possibility that R(u,v) is identically 0, this remark does not apply to R.

Let (ug,: vg) be any point in P}, not equal to any of the (u; : v;). (Technical
point If K has only two elements, then P} has only three elements. In this
case, enlarge K to GF'(4). The o we obtain is forced to be in K since it is the
ratio of a coefficient of R and a coefficient of S, both of which are in K.) Since
S can have at most three zeros, S(ug,vp) # 0. Let a = R(ugp,vo)/S (uo,vo).
Then R(u,v) — aS(u,v) is a cubic homogeneous polynomial that vanishes at
the four points (u; : v;), ¢ = 0,1,2,3. Therefore R — S must be identically

Zero.

Returning to the proof of the theorem, we note that C and 11 mMemms vanish
at the points (u; : v;), ¢ = 1,2,3. Moreover, if k of the points P;; are the
same point, then k of the linear functions vanish at this point, so the product
11 (u, v)mg (u, v)ms(u, v) vanishes to order at least k. By assumption, C
vanishes to order at least £ in this situation. By the lemma, there exists a
constant « such that

C= Oé’fhlfflgﬁlg.

Let
Cl(x7y7 Z) = C(IL’,y, Z) - Oéml(xvya Z)m2('ray7 z)m3(x,y, Z)

The line ¢; can be described by a linear equation ¢1(x,y, z) = ax+by+cz =
0. At least one coefficient is nonzero, so let’s assume a # 0. The other cases
are similar. The parameterization of the line /1 can be taken to be

x=—(b/a)u — (c/a)v, y=u, z=no. (2.4)

Then C (u,v) = C1(—(b/a)u—(c/a)v,u,v). Write Cy(z,y, z) as a polynomial
in & with polynomials in y, 2z as coefficients. Writing

" = (1/a") ((ax 4 by + cz) — (by +¢2))" = (1/a") ((ax + by +c2)" +---),

we can rearrange C1(z,y, z) to be a polynomial in ax + by + cz whose coeffi-
cients are polynomials in y, z:

Cl(x7y7 Z) = a3(y7 Z)(CZ.Z’ + by =+ CZ)B + et aO(yv Z)' (25)
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Substituting (2.4) into (2.5) yields
0= C’l(u,v) = ap(u,v),

since ax + by 4 cz vanishes identically when x, y, z are written in terms of u, v.
Therefore ag(y, z) = ap(u, v) is the zero polynomial. It follows from (2.5) that
C1(x,y, z) is a multiple of ¢1(x,y, z) = ax + by + cz.

Similarly, there exists a constant 3 such that C'(x,y, z) — B€1€2{3 is a mul-
tiple of m;.

Let

D(z,y,z) = C — amimamg — Bl10503.

Then D(z,y, z) is a multiple of ¢; and a multiple of m;.

LEMMA 2.8
D(x,y,z) isamuldpk of 1 (z,y, z)m1(z,y, 2) .

PROOF Write D = m1D;. We need to show that ¢; divides D;. We
could quote some result about unique factorization, but instead we proceed
as follows. Parameterize the line ¢; via (2.4) (again, we are considering the
case a # 0). Substituting this into the relation D = myD; yields D= ﬁ@lf)l.
Since ¢ divides D, we have D = 0. Since my # {1, we have my # 0. Therefore
Dy (u,v) is the zero polynomial. As above, this implies that Dy (z,y, z) is a
multiple of /1, as desired.

By the lemma,
D(zx,y,z) = lymq,

where {(z,y, z) is linear. By assumption, C' = 0 at Paa, Pa3, P32. Also, {10203
and mimemg vanish at these points. Therefore, D(z,y, z) vanishes at these
points. Our goal is to show that D is identically 0.

LEMMA 2.9
{(Pas) = £(Py3) = €(P32) = 0.

PROOF First suppose that Pj3 # Pa3. If 1(P3) = 0, then Pa3 is on
the line ¢; and also on /5 and mg by definition. Therefore, Ps3 equals the
intersection P;3 of /1 and m3. Since P»3 and P;3 are for the moment assumed
to be distinct, this is a contradiction. Therefore ¢1(Pa3) # 0. Since D(Pa3) =
0, it follows that ma (P23)£(P23) =0.

Suppose now that Pj3 = Ps3. Then, by the assumption in the theo-
rem, mg is tangent to C at Pa3, so ordy,, p,,(C) > 2. Since Pj3 = Pa3
and Pog lies on mg, we have ord,,, p,;(f1) = ordm, p,;(f2) = 1. There-
fore, ord,,, p,,(al1f2l3) > 2. Also, ord,,, p,,(Bmimaems) = oco. Therefore,
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Ordy,, Py (D) > 2, since D is a sum of terms, each of which vanishes to order
at least 2. But ord,,, p,,(¢1) = 1, so we have

Ordy,y pys (M1 ) = 0rdyy pys (D) — 0rdimy pyy (£1) > 1.

Therefore mq(Pa3)l(Pas) = 0.

In both cases, we have mj(Pa3)¢(Pa3) = 0.

If mq(Pa3) # 0, then ¢(Ps3) = 0, as desired.

If mq(Pe3) = 0, then Pa3 lies on my, and also on /5 and mg, by definition.
Therefore, Po3 = P51, since £5 and my intersect in a unique point. By as-
sumption, ¢y is therefore tangent to C' at P,3. Therefore, ordy, p,,(C) > 2.
As above, ordy, p,, (D) > 2, so

Ordg27p23 ((16) Z 1.

If in this case we have (1(P3) = 0, then Pz lies on #1,f5, m3. Therefore
P13 = P»3. By assumption, the line mg is tangent to C at P,3. Since Ps3 is a
nonsingular point of C', Lemma 2.5 says that /o = mg, contrary to hypothesis.
Therefore, ¢1(Pa3) # 0, so £(Pa3) = 0.

Similarly, E(PQQ) = E(ng) = 0. I

If ¢(z,y, 2) is identically 0, then D is identically 0. Therefore, assume that
¢(z,y, z) is not zero and hence it defines a line /.

First suppose that Pa3, Pso, P3o are distinct. Then £ and /5 are lines through
Ps3 and Psy. Therefore ¢ = f¢5. Similarly, £ = msy. Therefore {5 = mso,
contradiction.

Now suppose that P35 = Pa5. Then mo is tangent to C' at Pyy. As before,

ordyy,, py, (L1mal) > 2.

We want to show that this forces ¢ to be the same line as ms.

If mq(Pag) = 0, then Psy lies on mq, ma,lo. Therefore, Poy = Psy. This
means that /5 is tangent to C' at Pa3. By Lemma 2.5, /5 = mo, contradiction.
Therefore, my(Pas) # 0.

If 41 (P22) # 0, then ord,,, p,,(¢) > 2. This means that ¢ is the same line as
mao.

If El(PQQ) = 0, then P22 = P32 lies on El,ﬁg,ég,mg, SO P12 = P22 =
Psy. Therefore ord,,, p,,(C) > 3. By the reasoning above, we now have
ordy,, p,, (¢1mif) > 3. Since we have proved that mq(Pa2) # 0, we have
ordsm,, p,, (¢) > 2. This means that £ is the same line as ma.

So now we have proved, under the assumption that P3o = Pso, that £ is the
same line as my. By Lemma 2.9, Ps3 lies on ¢, and therefore on mo. It also
lies on /5 and ms3. Therefore, Poo = Ps3. This means that ¢, is tangent to C
at Pyo. Since P35 = Py means that mo is also tangent to C at Pso, we have
l5 = mo, contradiction. Therefore, P3o # Pso (under the assumption that

0+ 0).
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Similarly, P23 7é P22.

Finally, suppose Po3 = P3o. Then Psg lies on fo, /035, mo, m3. This forces
Py5 = P35, which we have just shown is impossible.

Therefore, all possibilities lead to contradictions. It follows that ¢(z,y, z)
must be identically 0. Therefore D = 0, so

C = aflégfg + ﬂmlmgmg.

Since ¢35 and mg vanish at Ps3, we have C'(Ps3) = 0, as desired. This completes
the proof of Theorem 2.6.

REMARK 2.10 Note that we proved the stronger result that
C = &515253 + ﬁm1m2m3

for some constants «, (3. Since there are 10 coefficients in an arbitrary ho-
mogeneous cubic polynomial in three variables and we have required that C
vanish at eight points (when the P;; are distinct), it is not surprising that the
set of possible polynomials is a two-parameter family. When the P;; are not
distinct, the tangency conditions add enough restrictions that we still obtain
a two-parameter family.

We can now prove the associativity of addition for an elliptic curve. Let
P,Q, R be points on E. Define the lines

51:P_Q, EQZOO,Q‘I_R, KgZR,P—{—Q

mlzm, me =00,P+Q, m3=PQ+R.

We have the following intersections:

2 0y {3
my Q —(Q+R) R
my | —(P+ Q) 00 P+Q
ms P Q+R X

Assume for the moment that the hypotheses of the theorem are satisfied.
Then all the points in the table, including X, lie on E. The line £3 has three
points of intersection with E, namely R, P + ), and X. By the definition of
addition, X = —((P + Q) + R). Similarly, ms intersects C' in 3 points, which
means that X = —(P+(Q+ R)). Therefore, after reflecting across the z-axis,
we obtain (P+ Q)+ R= P+ (Q + R), as desired.

It remains to verify the hypotheses of the theorem, namely that the orders
of intersection are correct and that the lines ¢; are distinct from the lines m;.

First we want to dispense with cases where oo occurs. The problem is that
we treated oo as a special case in the definition of the group law. However,
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as pointed out earlier, the tangent line at oo intersects the curve only at oo
(and intersects to order 3 at co). It follows that if two of the entries in a row
or column of the above table of intersections are equal to oo, then so is the
third, and the line intersects the curve to order 3. Therefore, this hypothesis
is satisfied.

It is also possible to treat directly the cases where some of the intersection
points P,Q, R,+(P + Q),£(Q + R) are co. In the cases where at least one of
P,Q, R is oo, associativity is trivial.

If P+Q = oo, then (P+ Q)+ R = oo+ R = R. On the other hand,
the sum @) + R is computed by first drawing the line L through @ and R,
which intersects E in —(Q + R). Since P + Q) = 0o, the reflection of @) across
the x-axis is P. Therefore, the reflection L’ of L passes through P, —R, and
@ + R. The sum P + (Q + R) is found by drawing the line through P and
Q + R, which is L'. We have just observed that the third point of intersection
of L' with FE is —R. Reflecting yields P+ (Q + R) = R, so associativity holds
in this case.

Similarly, associativity holds when Q) + R = oo.

Finally, we need to consider what happens if some line ¢; equals some line
m;, since then Theorem 2.6 does not apply.

First, observe that if P, @), R are collinear, then associativity is easily verified
directly.

Second, suppose that P,Q,Q + R are collinear. Then P 4+ (Q + R) = —Q.
Also, P+ Q = —(Q+ R),s0 (P+ Q)+ R = —(Q + R) + R. The second
equation of the following shows that associativity holds in this case.

LEMMA 2.11
Let P, P, e points on an elliptic curve. Then (P, + P,) — P, = P; and
—(PL+P)+P=—-P.

PROOF The two relations are reflections of each other, so it suffices to
prove the second one. The line L through P; and P, intersects the elliptic
curve in —(P; + P3). Regarding L as the line through —(P; + P») and Py
yields —(Py + P») + P, = — P, as claimed. |

Suppose that ¢; = m; for some %, j. We consider the various cases. By the
above discussion, we may assume that all points in the table of intersections
are finite, except for oo and possibly X. Note that each ¢; and each m; meets
E in three points (counting multiplicity), one of which is P;;. If the two lines
coincide, then the other two points must coincide in some order.

1. /1 =mq: Then P, (@, R are collinear, and associativity follows.

2. 1 = moy: In this case, P, Q, 0o are collinear, so P+ () = o0o; associativity
follows by the direct calculation made above.
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3. {5 = my: Similar to the previous case.
4. ¢4 = mg: Then P, Q, Q+ R are collinear; associativity was proved above.

5. £3 = mq: Similar to the previous case.

6. lo = my: Then P+ @Q must be +=(Q + R). If P+ Q = @ + R, then
commutativity plus the above lemma yields

P=(P+Q)-Q=(Q+R) -Q=R
Therefore,
(P+Q)+R=R+(P+Q)=P+(P+Q)=P+(R+Q) =P+ (Q+R).
If P+Q=—(Q+ R), then
(P+Q)+R=—-(Q+R)+R=-Q

and
P+(Q+R)=P—(P+Q)=-0Q,

so associativity holds.

7. {5 = mg: In this case, the line m3 through P and (Q + R) intersects E
in 0o, so P = —(Q + R). Since —(Q + R), @, R are collinear, we have
that P, Q, R are collinear and associativity holds.

8. I3 = msy: Similar to the previous case.

9. 3 = mg3: Since /3 cannot intersect F in 4 points (counting multiplici-
ties), it is easy to see that P=Ror P=P+Qor Q+ R=P+ Q or
@@ + R = R. The case P = R was treated in the case f5 = my. Assume
P =P+ Q. Adding —P and applying Lemma 2.11 yields co = @), in
which case associativity immediately follows. The case Q + R = R is
similar. If Q + R = P + @, then adding —(Q and applying Lemma 2.11
yields P = R, which we have already treated.

If ¢; # m; for all 4, j, then the hypotheses of the theorem are satisfied, so
the addition is associative, as proved above. This completes the proof of the
associativity of elliptic curve addition.

REMARK 2.12 Note that for most of the proof, we did not use the
Weierstrass equation for the elliptic curve. In fact, any nonsingular cubic
curve would suffice. The identity O for the group law needs to be a point
whose tangent line intersects to order 3. Three points sum to 0 if they lie
on a straight line. Negation of a point P is accomplished by taking the line
through O and P. The third point of intersection is then —P. Associativity
of this group law follows just as in the Weierstrass case.
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2.4.1 The Theorems of Pappus and Pascal

Theorem 2.6 has two other nice applications outside the realm of elliptic
curves.

THEOREM 2.13 (Pascal’s Theorem)

Let ABCDEF ke a hexagon fnscribed In a conic section (ellipse, paralol,
or hypertol), where A, B,C, D, E, F are distinct points In the a ne phne.
Let X be the intersection of AB and DE, ktY be the intersection of BC' and
EF, and ¥t Z be the mtersecton of CD and FA. Then X, Y, Z are collinear
(see Figure 2 4).

Figure 2.4

Pascal’s Theorem

REMARK 2.14 (1) A conic is given by an equation ¢(x,y) = ax? + bxy +
cy? +dx+ey+ f = 0 with at least one of a, b, ¢ nonzero. Usually, it is assumed
that b? —4ac # 0; otherwise, the conic degenerates into a product of two linear
factors, and the graph is the union of two lines. The present theorem holds
even in this case, as long as the points A, C, E lie on one of the lines, B, D, I
lie on the other, and none is the intersection of the two lines.

(2) Possibly AB and DE are parallel, for example. Then X is an infinite
point in PZ%.

(3) Note that X, Y, Z will always be distinct. This is easily seen as follows:
First observe that X,Y,Z cannot lie on the conic since a line can intersect
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the conic in at most two points; the points A, B,C, D, E, F' are assumed to
be distinct and therefore exhaust all possible intersections. If X =Y, then
AB and BC meet in both B and Y, and therefore the lines are equal. But
this means that A = C, contradiction. Similarly, X # Z and Y # Z.

PROOF  Define the following lines:

{1 =FEF, ly =AB, {5 =CD, m; = BC, my = DE, m3 = FA.

We have the following table of intersections:

0y by U3
ma Y B C
mo | E X D
ms F A 7

Let g(x,y) = 0 be the affine equation of the conic. In order to apply The-
orem 2.6, we change ¢(z,y) to its homogeneous form Q(z,y, z). Let {(x,y, 2)
be a linear form giving the line through X and Y. Then

Clz,y,2) = Q(z,y, 2)l(z,y, 2)

is a homogeneous cubic polynomial. The curve C = 0 contains all of the
points in the table, with the possible exception of Z. It is easily checked that
the only singular points of C are the points of intersection of ) = 0 and
¢ = 0, and the intersection of the two lines comprising () = 0 in the case
of a degenerate conic. Since none of these points occur among the points
we are considering, the hypotheses of Theorem 2.6 are satisfied. Therefore,
C(Z) = 0. Since Q(Z) # 0, we must have ¢{(Z) = 0, so Z lies on the line
through X and Y. Therefore, X, Y, Z are collinear. This completes the proof
of Pascal’s theorem.

COROLLARY 2.15 (Pappus’s Theorem)

Let / and m be two distinct lines in the plhne. Let A, B, C' e distinct points
of / and ket A’, B’,C’ e distinct points of m. Assume that none of these
points is the mtersection of ¢ and m. Let X be the Mntersection of AB’ and
A'B, etY be the intersection of B’C' and BC’, and ket Z ke the intersection
of CA’ and C'A. Then XY, Z are collinear (see Figure 2 .5).

PROOF This is the case of a degenerate conic in Theorem 2.13. The
“hexagon” is AB'CA’BC".
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Figure 2.5
Pappus’s Theorem

2.5 Other Equations for Elliptic Curves

In this book, we are mainly using the Weierstrass equation for an elliptic
curve. However, elliptic curves arise in various other guises, and it is worth-
while to discuss these briefly.

2.5.1 Legendre Equation

This is a variant on the Weierstrass equation. Its advantage is that it
allows us to express all elliptic curves over an algebraically closed field (of
characteristic not 2) in terms of one parameter.

PROPOSITION 2.16
Let K ke a field of characteristic not 2 and ket

v =2 +ax? +bx+c=(z—e1)lz —e)(x —e3)

ke an elliptic curve I over K with e1,e0,e3 € K. Let

—3/2 €3 — €1

T = (62 - 61)_1(50 - 61), Y1 = (62 - 61) Yy, A=

62—61'

Then A # 0,1 and
y% =x1(z1 — 1)(x1 — A).

PROOF This is a straightforward calculation. 1
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The parameter \ for F is not unique. In fact, each of

1 1 AoA-1
S SR way U v L e

yields a Legendre equation for E. They correspond to the six permutations
of the roots eq,es,e3. It can be shown that these are the only values of
A corresponding to F, so the map A — FE is six-to-one, except where A =
—1,1/2, 2, or A2 — XA+ 1 =0 (in these situations, the above set collapses; see
Exercise 2.13).

2.5.2 Cubic Equations

It is possible to start with a cubic equation C(x,y) = 0, over a field K of
characteristic not 2 or 3, that has a point with x,y € K and find an invertible
change of variables that transforms the equation to Weierstrass form (although
possibly 443 +27B?% = 0). The procedure is fairly complicated (see [25], [28],
or [84]), so we restrict our attention to a specific example.

Consider the cubic Fermat equation

23 P+ 2% =0.

The fact that this equation has no rational solutions with xyz # 0 was conjec-
tured by the Arabs in the 900s and represents a special case of Fermat’s Last
Theorem, which asserts that the sum of two nonzero nth powers of integers
cannot be a nonzero nth power when n > 3. The first proof in the case n = 3
was probably due to Fermat. We’ll discuss some of the ideas for the proof in
the general case in Chapter 15.

Suppose that 23 + 3% + 23 = 0 and xyz # 0. Since 23 + y> = (z + y)(2? —
ry + y?), we must have z +y # 0. Write

L Y
—=u-+v, —=u-—0.
z z

Then (u+v)% + (u—v)3+1 =0, so 2u® + 6uv? + 1 = 0. Divide by u? (since
x4y # 0, we have u # 0) and rearrange to obtain

6(v/u)? = —(1/u)® — 2.

Let
. L vt )
U Tr+y U r+y
Then
Y7 = x5 — 432,

It can be shown (this is somewhat nontrivial) that the only rational solutions
to this equation are (x1,y1) = (12,436), and oco. The case y; = 36 yields
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r—y=ux+y,soy = 0. Similarly, y; = —36 yields x = 0. The point with
(z1,y1) = oo corresponds to x = —y, which means that z = 0. Therefore,
there are no solutions to 2 + ¢ + 2® = 0 when zyz # 0.

2.5.3 Quartic Equations

Occasionally, we will meet curves defined by equations of the form
v? = au + bud + cu® + du + e, (2.6)

with a # 0. If we have a point (p, ¢q) lying on the curve with p,q € K, then
the equation (when it is nonsingular) can be transformed into a Weierstrass
equation by an invertible change of variables that uses rational functions with
coefficients in the field K. Note that an elliptic curve F defined over a field K
always has a point in E(K), namely co (whose projective coordinates (0 : 1 : 0)
certainly lie in K). Therefore, if we are going to transform a curve C' into
Weierstrass form in such a way that all coefficients of the rational functions
describing the transformation lie in K, then we need to start with a point on
C that has coordinates in K.

There are curves of the form (2.6) that do not have points with coordinates
in K. This phenomenon will be discussed in more detail in Chapter 8.

Suppose we have a curve defined by an equation (2.6) and suppose we have
a point (p,q) lying on the curve. By changing u to u 4+ p, we may assume
p = 0, so the point has the form (0, q).

First, suppose ¢ = 0. If d = 0, then the curve has a singularity at (u,v) =
(0,0). Therefore, assume d # 0. Then

(

— ) =d(— — b(— .

SR = A e b +a

This can be easily transformed into a Weierstrass equation in d/u and dv/u?.
The harder case is when ¢ # 0. We have the following result.

THEOREM 2.17
Let K e a field of characteristic not 2. C onsider the equation

v? = aut + bud + cu® + du + ¢?

with a,b,c,d,q € K. Let

o 24w +q) +du 4@ (v + q) + 2q(du + cu?) — (d*u?/2q)

; =

u? u3

D efine

a1 =d/q, as=c—(d*/4¢*), a3=2gb, ays=—4¢%a, as = azay.
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T hen
y2 +ai1xy + aszy = x> + a2$2 + a4 + ag.

T he mverse transform ation is

— (d? —
"y 2q(z +c¢)— (d /2q)’ o= gt u(ux d).
y 2q

The pont (u,v) = (0,q) corresponds to the point (z,y) = oo and (u,v) =
(0, —q) corresponds o (x,y) = (—az, aras — az) .

PROOF Most of the proof is a “straightforward” calculation that we omit.
For the image of the point (0, —q), see [28].

Example 2.2
Consider the equation

v =t 4 1. (2.7)
Thena=1,b=c=d=0,and ¢ =1. If
2(v+1) 4w +1)

u?2

then we obtain the elliptic curve F given by

y2 = 2% — 4z

The inverse transformation is
u=2x/y, v=—1+(22%/y?).

The point (u,v) = (0,1) corresponds to co on E, and (u,v) = (0, —1) corre-
sponds to (0,0). We will show in Chapter 8 that

E(Q) = {007 (07 O)v (27 O)a (_27 O)}

These correspond to (u,v) = (0,1),(0,—1), and points at infinity. Therefore,
the only finite rational points on the quartic curve are (u,v) = (0,£1). It is
easy to deduce from this that the only integer solutions to

at + vt =2

satisfy ab = 0. This yields Fermat’s Last Theorem for exponent 4. We will
discuss this in more detail in Chapter 8.

It is worth considering briefly the situation at infinity in u,v. If we make
the equation (2.7) homogeneous, we obtain

F(u,v,w) = v*w? —u* —w? = 0.
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The points at infinity have w = 0. To find them, we set w = 0 and get 0 = u?,
which means v = 0. We thus find only the point (u:v:w)=(0:1:0). But
we have two points, namely (2,0) and (—2,0) in the corresponding Weierstrass
model. The problem is that (u: v :w) = (0:1:0) is a singular point in the
quartic model. At this point we have

F,=F,=F,=0.

What is happening is that the curve intersects itself at the point (u : v :
w) = (0 : 1:0). One branch of the curve is v = +u?y/1 + (1/u)* and the
other is v = —u?y/1 + (1/u)*. For simplicity, let’s work with real or complex
numbers. If we substitute the second of these expressions into z = 2(v+1) /u?
and take the limit as u — oo, we obtain

20 +1)  2(1 —u?y/1+ (1/u)?) Y

€r = =
u? u?

If we use the other branch, we find x — +2. So the transformation that
changes the quartic equation into the Weierstrass equation has pulled apart
the two branches (the technical term is “resolved the singularities”) at the
singular point. I

2.5.4 Intersection of Two Quadratic Surfaces

The intersection of two quadratic surfaces in three-dimensional space, along
with a point on this intersection, is usually an elliptic curve. Rather than work
in full generality, we’ll consider pairs of equations of the form

av? + b’ =e, cu+duw® =",

where a, b, c,d, e, f are nonzero elements of a field K of characteristic not 2.
Each separate equation may be regarded as a surface in uvw-space, and they
intersect in a curve. We’ll show that if we have a point P in the intersection,
then we can transform this curve into an elliptic curve in Weierstrass form.

Before analyzing the intersection of these two surfaces, let’s consider the
first equation by itself. It can be regarded as giving a curve C in the uv-
plane. Let P = (ug,vp) be a point on C. Let L be the line through P with
slope m:

u=1ug+t, v=uvy+ mt.

We want to find the other point where L intersects C. See Figure 2.6.
Substitute into the equation for C' and use the fact that aud + bv = e to
obtain

a(2ugt + %) + b(2ugmt + m?t?) = 0.
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(u, v)

Figure 2.6

Since t = 0 corresponds to (ug,vg), we factor out ¢ and obtain

B 2aug + 2bvgm

t =
a + bm?
Therefore,
2aug + 2bvgm 2amugy + 2bvgm?
U= uy — v =1 —
0 a+bm2 0 a + bm?

We make the convention that m = oo yields (ug, —vg), which is what we get
if we are working with real numbers and let m — oo. Also, possibly the
denominator a +bm? vanishes, in which case we get points “at infinity” in the
uv-projective plane (see Exercise 2.14).

Note that if (u,v) is any point on C with coordinates in K, then the slope
m of the line through (u,v) and P is in K (or is infinite). We have there-
fore obtained a bijection, modulo a few technicalities, between values of m
(including co) and points on C' (including points at infinity). The main point
is that we have obtained a parameterization of the points on C'. A similar
procedure works for any conic section containing a point with coordinates in
K.

Which value of m corresponds to the original point (ug,vg)? Let m be the
slope of the tangent line at (ug,vg). The second point of intersection of the
tangent line with the curve is again the point (ug,vp), so this slope is the
desired value of m. The value m = 0 yields the point (—ug,vg). This can be
seen from the formulas, or from the fact that the line through (—ug,vg) and
(up, vo) has slope 0.

We now want to intersect C', regarded as a “cylinder” in uvw-space, with
the surface cu? 4+ dw? = f. Substitute the expression just obtained for u to
obtain

2aug + 2bvgm 2
a+ bm?2

de:f—c(uo—
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This may be rewritten as

d(w(a +bm?))? = (a +bm?*)?f — c(bugm? — 2bvgm — aug)?
= (b*f — cb*ud)m* + - - - .

This may now be changed to Weierstrass form by the procedure given ear-
lier. Note that the leading coefficient b f — cb*u? equals b*dw3. If wy = 0,
then fourth degree polynomial becomes a cubic polynomial, so the equation
just obtained is easily put into Weierstrass form. The leading term of this
cubic polynomial vanishes if and only if vo = 0. But in this case, the point
(ug, vo, wo) = (ug,0,0) is a singular point of the uvw curve — a situation that
we should avoid (see Exercise 2.15).

The procedure for changing “square = degree four polynomial” into Weier-
strass form requires a point satisfying this equation. We could let m be the
slope of the tangent line at (ug,vg), which corresponds to the point (ug, vg).
The formula of Theorem 2.17 then requires that we shift the value of m to
obtain m = 0. Instead, it’s easier to use m = 0 directly, since this value
corresponds to (—ug, vg), as pointed out above.

Example 2.3
Consider the intersection

u?+02 =2, u?+4w? =5.

Let (ug, vo,wp) = (1,1, 1). First, we parameterize the solutions to u?+v? = 2.
Let u=1+t,v =1+ mt. This yields

(141> + (1 +mt)? =2,

which yields #(2 + 2m) + t2(1 + m?) = 0. Discarding the solution ¢ = 0, we
obtain t = —(2 + 2m) /(1 + m?), hence
2+2m  m?—2m—1 2+42m  1—2m—m?

= T 14m? 1+m2 v

T T 2 T T 1+ m2

Note that m = —1 corresponds to (u,v) = (1,1) (this is because the tangent
at this point has slope m = —1). Substituting into u? + 4w? = 5 yields

4wl +m?)? =5(1+m?)? — (m? —2m — 1)* = 4m* + 4m> +8m? —4dm + 4.
Letting r = w(1 + m?) yields
2

P =m*+m2+2m?>—m+1.

In Theorem 2.17, we use ¢ = 1. The formulas then change this curve to the
generalized Weierstrass equation

7
y2—xy—|—2y:x3—|—1x2—4:c—7.
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Completing the square yields
y; = 2° + 22% — 5z — 6,

Whereylzy—l—l—%x. [l

2.6 Other Coordinate Systems

The formulas for adding two points on an elliptic curve in Weierstrass form
require 2 multiplications, 1 squaring, and 1 inversion in the field. Although
finding inverses is fast, it is much slower than multiplication. In [27, p. 282],
it is estimated that inversion takes between 9 and 40 times as long as multi-
plication. Moreover, squaring takes about 0.8 the time of multiplication. In
many situations, this distinction makes no difference. However, if a central
computer needs to verify many signatures in a second, such distinctions can
become relevant. Therefore, it is sometimes advantageous to avoid inversion
in the formulas for point addition. In this section, we discuss a few alternative
formulas where this can be done.

2.6.1 Projective Coordinates

A natural method is to write all the points as points (x : y : z) in projective
space. By clearing denominators in the standard formulas for addition, we
obtain the following:

Let P, = (z; : y;i @ 2i), i = 1,2, be points on the elliptic curve y?z =
23 + Axz? + Bz3. Then

(x1:y1:21) 4+ (w2 1 y2 1 22) = (x3 : Y3 : 23),

where x3,y3, 23 are computed as follows: When P; # + P,

U = Y221 — Y122, V= XT9z1 — L1722, w = u2z122 — US — 2’0233'12’2,

T3 =vw, Y3 = u(v2x1z2 —w) — v3y1ze, 23 =v32120.
When P, = P,
t=A22+32%, w=1y121, v=uxiyy, w=1t>—38uv,
T3 = 2uw, y3=t(4v —w)—8yiu?, z3 = 8u’.

When P, = —P,, we have P, + P, = oc.
Point addition takes 12 multiplications and 2 squarings, while point dou-
bling takes 7 multiplications and 5 squarings. No inversions are needed. Since
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addition and subtraction are much faster than multiplication, we do not con-
sider them in our analysis. Similarly, multiplication by a constant is not
included.

2.6.2 Jacobian Coordinates

A modification of projective coordinates leads to a faster doubling proce-
dure. Let (z : y : 2) represent the affine point (x/22,y/2%). This is somewhat
natural since, as we’ll see in Chapter 11, the function x has a double pole at oo
and the function y has a triple pole at co. The elliptic curve y? = 23+ Az + B
becomes

y? = 2% + Axz* + B2°,

The point at infinity now has the coordinates co = (1:1:0).
Let P, = (z; : y; : 2), i = 1,2, be points on the elliptic curve y?> =
z3 4+ Azxz* + B25. Then

(x1:y1:21) 4+ (T2 1 y2 1 22) = (w3 : Y3 : 23),
where x3,y3, 23 are computed as follows: When P} # +Ps,

r:xlzg, s:xng, t:ylzg, u:ygzi’, v=8—71, w=u-—1t,

g = —v3 — 2rv +w?,  y3 = —tvd + (rv2 — T3)w, 23 = Vz129.
When Pl = PQ,

v =4ry?, w=3x + Az},

g = —20+w?, y3= —8yi1 + (v —z3)w, 23 =2y;21.

When P, = —P,, we have P; + P, = oo.

Addition of points takes 12 multiplications and 4 squarings. Doubling takes
3 multiplications and 6 squarings. There are no inversions.

When A = —3, a further speed-up is possible in doubling: we have w =
3(x? — 21) = 3(x1 + 23) (21 — 23), which can be computed in one squaring and
one multiplication, rather than in 3 squarings. Therefore, doubling takes only
4 multiplications and 4 squarings in this case. The elliptic curves in NIST’s
list of curves over fields F, ([86], [48, p. 262]) have A = —3 for this reason.

There are also situations where a point in one coordinate system can be
efficiently added to a point in another coordinate system. For example, it takes
only 8 multiplications and 3 squarings to add a point in Jacobian coordinates
to one in affine coordinates. For much more on other choices for coordinates
and on efficient point addition, see [48, Sections 3.2, 3.3] and [27, Sections
13.2, 13.3].
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2.6.3 Edwards Coordinates

In [36], Harold Edwards describes a form for elliptic curves that has certain
computational advantages. The case with ¢ = 1,d = —1 occurs in work of
Euler and Gauss. Edwards restricts to the case d = 1. The more general form
has subsequently been discussed by Bernstein and Lange [11].

PROPOSITION 2.18
Let K ke a field of characteristic not 2. Let¢,d € K with ¢,d # 0 and d not
a square in K. The curve

C: u?+0? =21+ duv?)
is isom orphic to the elliptic curve
E: 9?=(z—cd—-1)(a* —4cd)
via the change of variables

—2c(w — ¢) 4P (w =) + 2¢(ctd + 1)u?

r = ——- y_
u? '

u? ’
where w = (c2du® — 1)v.

The point (0, ¢) is the identity for the group Ilaw on C', and the addition law
is

U1V + UV1 V1V2 — U1UY
1+ dujusviva) " (1 — dujusvivs)

(ur,v1) + (ug,v2) = (C(

for all points (u;, v;) € C(K). The negative of a pomt is —(u,v) = (—u,v).

PROOF  Write the equation of the curve as

,w2

2 2 2 2 2
—_— f— d _1 ——.
Uu C —(C U )’U —02 u2 1

This yields the curve
w? = Adu — (ctd + 1)u? + 2.

The formulas in Section 2.5.3 then change this curve to Weierstrass form. The
formula for the addition law can be obtained by a straightforward computa-
tion.

It remains to show that the addition law is defined for all points in C'(K).
In other words, we need to show that the denominators are nonzero. Suppose
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duyviugve = —1. Then wu;,v; # 0 and uyv; = —1/dugve. Substituting into
the formula for C' yields

1 2 2
u%-l—v%:cQ(l-l— >=u2+v2

2,2 2,2
duzvs dusvs

Therefore,

(u1 +v1)° = u? + 03 + 2y

1 (u% +v2 — 21@1}2) 1 (ug — U2)2
d u3v3 d (usz)Q '

Since d is not a square, this must reduce to 0 = 0, so u; + v; = 0.

Similarly,
o 1 (ug+vy)?
U —0) = 53— 3 >
( ) d (U2U2)2
which implies that u; — v; = 0. Therefore, u; = v1 = 0, which is a contradic-
tion.

The case where dujviusve = 1 similarly produces a contradiction. There-
fore, the addition formula is always defined for points in C'(K).

An interesting feature is that there are not separate formulas for 2P and
P+ P whenPlséPQ.

The formula for adding points can be written in projective coordinates. The
resulting computation takes 10 multiplications and 1 squaring for both point
addition and point doubling.

Although any elliptic curve can be put into the form of the proposition over
an algebraically closed field, this often cannot be done over the base field. An
easy way to see this is that there is a point of order 2. In fact, the point (¢, 0)
on C has order 4 (Exercise 2.7), so a curve that can be put into Edwards form
over a field must have a point of order 4 defined over that field.

2.7 The j-invariant

Let E be the elliptic curve given by y? = 2% + Ax + B, where A, B are
elements of a field K of characteristic not 2 or 3. If we let

v = plz, y=ply, (2.8)
with p € FX, then we obtain

y% = .CE? + Alxl + Bl,
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with
Al = ILL4A, Bl = /,L6B

(In the generalized Weierstrass equation y? + a1zy + asy = 22 + asx? + agx +
ag, this change of variables yields new coefficients p‘a;. This explains the
numbering of the coefficients.)

Define the j-invariant of F to be

4A3

= i(F) = 17282
J=J(B) = 1728 s

Note that the denominator is the negative of the discriminant of the cubic,
hence is nonzero by assumption. The change of variables (2.8) leaves j un-
changed. The converse is true, too.

THEOREM 2.19

Lety? = 23+ A1y + By and y3 = a3 + Aswo + Bs e two elliptic curves with
j-Invariants j; and jo, respectively. If j; = jo, then there exists u # 0 In K
(= algebraic clsure of K') such that

Ay =p*Ay, By =By,

T he transform ation
To = pPr1, Y2 = Py

takes one equation to the other.

PROOF First, assume that A; # 0. Since this is equivalent to j; # 0, we
also have A, # 0. Choose p such that Ay = p*A;. Then

443 443 412 43 443

4A3 +2TBZ  4A3 +27TB?  4u~12A3 +27B7  4A3 +27ul2BY’

which implies that
B3 = (u°B1)*.

Therefore By = +u%B,. If By = u%B;, we're done. If By = —uSBy, then
change p to iy (where 2 = —1). This preserves the relation Ay = ptA4; and
also yields By = u8B;.

If A; =0, then Ay = 0. Since 443 +27B2 # 0, we have By, By # 0. Choose
u such that By = ubB;. |

There are two special values of j that arise quite often:
1. j = 0: In this case, the elliptic curve E has the form y? = 23 + B.

2. j = 1728: In this case, the elliptic curve has the form y? = 23 + Ax.
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The first one, with B = —432, was obtained in Section 2.5.2 from the Fermat
equation z2 4+ 43 + 23 = 0. The second curve, once with A = —25 and once
with A = —4, appeared in Chapter 1.

The curves with j = 0 and with j = 1728 have automorphisms (bijective
group homomorphisms from the curve to itself) other than the one defined by
(z,y) — (x,—y), which is an automorphism for any elliptic curve in Weier-
strass form.

1. y*> = 23 + B has the automorphism (z,y) — (Cx, —y), where ( is a
nontrivial cube root of 1.

2. y? = 23 + Ax has the automorphism (z,y) — (—x,iy), where i = —1.

(See Exercise 2.17.)

Note that the j-invariant tells us when two curves are isomorphic over an
algebraically closed field. However, if we are working with a nonalgebraically
closed field K, then it is possible to have two curves with the same j-invariant
that cannot be transformed into each other using rational functions with co-
efficients in K. For example, both y? = 23 — 252 and y?> = 23 — 4z have
j = 1728. The first curve has infinitely points with coordinates in @Q, for
example, all integer multiples of (—4,6) (see Section 8.4). The only rational
points on the second curve are 0o, (2,0), (—2,0), and (0,0) (see Section 8.4).
Therefore, we cannot change one curve into the other using only rational func-
tions defined over Q. Of course, we can use the field Q(1/10) to change one
curve to the other via (z,y) — (u%x, u3y), where p = /10/2.

If two different elliptic curves defined over a field K have the same j-
invariant, then we say that the two curves are twists of each other.

Finally, we note that j is the j-invariant of

3 -T + 2 .

1728 — 5 1728 — 5

when j # 0,1728. Since y? = 23 4+ 1 and y? = 2% + = have j-invariants 0
and 1728, we find the j-invariant gives a bijection between elements of K and
K-isomorphism classes of elliptic curves defined over K (that is, each j € K
corresponds to an elliptic curve defined over K, and any two elliptic curves
defined over K and with the same j-invariant can be transformed into each
other by a change of variables (2.8) defined over K).

If the characteristic of K is 2 or 3, the j-invariant can also be defined, and
results similar to the above one hold. See Section 2.8 and Exercise 2.18.

y2 =2+ (2.9)

2.8 Elliptic Curves in Characteristic 2

Since we have been using the Weierstrass equation rather than the gener-
alized Weierstrass equation in most of the preceding sections, the formulas
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given do not apply when the field K has characteristic 2. In this section, we
sketch what happens in this case.

Note that the Weierstrass equation is singular. Let f(z,y) = y* — 23 —
Az — B. Then f, = 2y = 0, since 2 = 0 in characteristic 2. Let z¢ be a
root (possibly in some extension of K) of f, = —32%> — A = 0 and let yo
be the square root of x§ + Axg + B. Then (z9,yo) lies on the curve and
fz(20,%0) = fy(wo,y0) = 0.

Therefore, we work with the generalized Weierstrass equation for an elliptic
curve E:

y2 +ai1xy + aszy = x> + agng + a4 + ag.

If a1 # 0, then the change of variables
r=a’r, + (as/a1), y=day +a;>(aay + a?)
changes the equation to the form
yi + iy = af + apat + ag.

This curve is nonsingular if and only if af # 0. The j-invariant in this case
is defined to be 1/ag (more precisely, there are formulas for the j-invariant of
the generalized Weierstrass form, and these yield 1/ag in this case).

If ap =0, we let z = x1 + a2, y = y1 to obtain an equation of the form

2 ! 3 / /
Yi +azyn = 27 + ay1 + ag.

This curve is nonsingular if and only if aj # 0. The j-invariant is defined to
be 0.

Let’s return to the generalized Weierstrass equation and look for points at
infinity. Make the equation homogeneous:

yzz + a1xyz + a3y22 =3+ angz + a4xz2 + CLGZB.

Now set z = 0 to obtain 0 = 23. Therefore, co = (0 : 1 : 0) is the only point
at infinity on F, just as with the standard Weierstrass equation. A line L
through (z¢,yo) and oo is a vertical line x = xg. If (g, yo) lies on E then the
other point of intersection of L and F is (zg, —a1x9 — a3 — yo). See Exercise
2.9.

We can now describe addition of points. Of course, P + oo = P, for all
points P. Three points P, (), R add to oo if and only if they are collinear. The
negation of a point is given by

—(:B,y) = (337 —a1T — a3 — y)

To add two points P, and P», we therefore proceed as follows. Draw the line
L through P; and P, (take the tangent if P} = P,). It will intersect F in a
third point P{. Now compute P3 = —Pj by the formula just given (do not
simply reflect across the z-axis). Then P; + P, = Ps.
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The proof that this addition law is associative is the same as that given in
Section 2.4. The points on E, including oo, therefore form an abelian group.

Since we will need it later, let’s look at the formula for doubling a point in
characteristic 2. To keep the formulas from becoming too lengthy, we’ll treat
separately the two cases obtained above.

1. y? +zy = 22 + asx® + ag. Rewrite this as y? + zy + 22 + as2x? + a6 = 0
(remember, we are in characteristic 2). Implicit differentiation yields

zy + (y+2°) =0

(since 2 = 0 and 3 = 1). Therefore the slope of the line L through
P = (w0,y0) is m = (yo + x3)/x¢. The line is

y=m(z — o) +yo =mz+b
for some b. Substitute to find the intersection (z1,y;) of L and E:
0 = (mx+b)*+z(mz+b)+2° +asr®+ag = 2° +(m* +m+az)z* +--- .
The sum g + xo + o1 of the roots is (m? +m + az), so we obtain

2 4 3 2 4
+ x5 + ToYo + xH + asx xq + ag
x1:m2+m—|—a2:y0 0 y2 0 0 - =0 5
Lo Lo

(since y2 = woyo + x5 + asx? + ag). The y-coordinate of the intersection
is y1 = m(x1 — xo) + yo. The point (x1,y1) equals —2P. Therefore
2P = (x27y2)7 with

L2 = (3361 +a6)/1‘%a Y2 = —T1 — Y1 =21 +Y1.

2. y? + a3y = 23 + asx + ag. Rewrite this as y? +azy + 23 +asx +ag = 0.
Implicit differentiation yields

azy’ + (2% + a4) = 0.
Therefore the tangent line L is

2
y=m(x —x9) +yo, with m= o+ aa
as

Substituting and solving, as before, finds the point of intersection (1, y1)
of L and E, where
o x5 +aj

=2

1 =m
and y; = m(x1 — o) + yo. Therefore, 2P = (z2,y2) with

xo = (zg+a3)/a3, y2 =as+yi.
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2.9 Endomorphisms

The main purpose of this section is to prove Proposition 2.21, which will
be used in the proof of Hasse’s theorem in Chapter 4. We’ll also prove a few
technical results on separable endomorphisms. The reader willing to believe
that every endomorphism used in this book is separable, except for powers
of the Frobenius map and multiplication by multiples of p in characteristic p,
can safely omit the technical parts of this section.

By an endomorphism of E, we mean a homomorphism « : E(K) — E(K)
that is given by rational functions. In other words, a(P1+Ps) = a(P1)+a(P),
and there are rational functions (quotients of polynomials) Ry (x,y), Ra(z,y)
with coefficients in K such that

a(z,y) = (Ri(z,y), Ra(z,y))

for all (z,y) € E(K). There are a few technicalities when the rational func-
tions are not defined at a point. These will be dealt with below. Of course,
since « is a homomorphism, we have a(o0) = co. We will also assume that
a is nontrivial; that is, there exists some (z,y) such that a(z,y) # co. The
trivial endomorphism that maps every point to co will be denoted by 0.

Example 2.4
Let E be given by > = 22 + Az + B and let a(P) = 2P. Then « is a
homomorphism and

O‘(xﬂy) = (R1<$,y), RQ(ivay))?
where

322 + A\’

= (554) (- (255

Since « is a homomorphism given by rational functions it is an endomorphism

of F. I

It will be useful to have a standard form for the rational functions describing
an endomorphism. For simplicity, we assume that our elliptic curve is given in
Weierstrass form. Let R(x,y) be any rational function. Since y? = 23+ Ar+B

for all (z,y) € E(K), we can replace any even power of y by a polynomial in
x and replace any odd power of y by y times a polynomial in x and obtain a
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rational function that gives the same function as R(z,y) on points in E(K).
Therefore, we may assume that

p1(z) + p2(2)y
p3(w) + pa(x)y

R(z,y) =

Moreover, we can rationalize the denominator by multiplying the numerator
and denominator by ps — psy and then replacing y? by =3 + Ax + B. This
yields

z) + q2(2)y
gs(r)

R(x,y) = @ (2.10)

Consider an endomorphism given by

a(z,y) = (Ri(z,y), Ra(z,y)),

as above. Since « is a homomorphism,
a(r, —y) = a(=(z,y)) = —alz,y).
This means that
Ri(z,—y) = Ri(z,y) and Ro(x,—y) = —Ra(x,y).

Therefore, if Ry is written in the form (2.10), then g2(x) = 0, and if Ry is
written in the form (2.10), then the corresponding ¢;(x) = 0. Therefore, we
may assume that

a(z,y) = (ri(z), ra(2)y)

with rational functions 7 (z), ra(z).
We can now say what happens when one of the rational functions is not
defined at a point. Write

ri(z) = p(z)/q(z)

with polynomials p(x) and ¢(x) that do not have a common factor. If g(x) =0
for some point (z,y), then we assume that a(z,y) = oo. If g(x) # 0, then
Exercise 2.19 shows that r2(x) is defined; hence the rational functions defining
« are defined.

We define the degree of o to be

deg(a) = Max{degp(z), deggq(z)}

if a is nontrivial. When a = 0, let deg(0) = 0. Define a@ # 0 to be a
separable endomorphism if the derivative ] (x) is not identically zero. This
is equivalent to saying that at least one of p/(x) and ¢'(x) is not identically
zero. See Exercise 2.22. (In characteristic 0, a nonconstant polynomial will
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have nonzero derivative. In characteristic p > 0, the polynomials with zero
derivative are exactly those of the form g(z?).)

Example 2.5
We continue with the previous example, where a(P) = 2P. We have
322+ A\’
R = —] —2x.

The fact that y? = 23 + Az + B, plus a little algebraic manipulation, yields

x* — 2Ax2% — 8Bx + A2
4(x3 + Az + B)

ri(z) =

(This is the same as the expression in terms of division polynomials that will
be given in Section 3.2.) Therefore, deg(ar) = 4. The polynomial ¢'(x) =
4(3z2 + A) is not zero (including in characteristic 3, since if A = 0 then
23 + B has multiple roots, contrary to assumption). Therefore « is separable.

[

Example 2.6

Let’s repeat the previous example, but in characteristic 2. We’ll use the
formulas from Section 2.8 for doubling a point. First, let’s look at y? + xy =
23 + asx® + ag. We have

a(z,y) = (r(z), Ra(z,y))

with 7 (z) = (z* + ag)/2%. Therefore deg(a) = 4. Since p/(z) = 42> = 0 and
¢ () = 22 = 0, the endomorphism « is not separable.

Similarly, in the case y*+azy = x> +asx +ag, we have r1(z) = (x+a3)/a3.
Therefore, deg(a) = 4, but « is not separable.

In general, in characteristic p, the map a(Q) = pQ has degree p* and is not
separable. The statement about the degree is Corollary 3.7. The fact that «
is not separable is proved in Proposition 2.28.

An important example of an endomorphism is the Frobenius map. Sup-
pose E is defined over the finite field F,. Let

Oq(z,y) = (29, 97).
The Frobenius map ¢, plays a crucial role in the theory of elliptic curves over

F,.

LEMMA 2.20
Let E ke defined over F,. Then ¢, is an endom orphism of E of degree ¢,
and ¢, is not separable.
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PROOF  Since ¢4(x,y) = (29,y?), the map is given by rational functions
(in fact, by polynomials) and the degree is g. The main point is that ¢, :

E(F,) — E(F,) is a homomorphism. Let (z1,y1), (z2,y2) € E(F,) with
x1 # x2. The sum is (x3,ys), with

Y2 — 1

3 =m? — x1 — xa, ys =m(xy — x3) —y1, where m = P
2 — I1

(we are working with the Weierstrass form here; the proof for the generalized
Weierstrass form is essentially the same). Raise everything to the gth power

to obtain
a_ .4
q _ 12 q q a_ (. q q r_ Y2 "N
rg=m" —x] — T, ys =m' (2] — z3) — oY, Wherem—mq_ajq.
2 — I

This says that
bq(23,y3) = dg(x1, Y1) + Pg(T2,92).

The cases where x1 = x5 or where one of the points is co are checked similarly.
However, there is one subtlety that arises when adding a point to itself. The

formula says that 2(x1,y1) = (r3,y3), with
322 + A
r3 =m? — 2z, ys = m(z1 — x3) — Y1, Wherem:2—+.
Y1

When this is raised to the gth power, we obtain

39(w1)* + A7

q _ 02 q q _ /(4 q q r_
rs=m" — 27, ys =m'(z] —23) —vy{, where m' = 270
1

Since 2,3, A € F,, we have 2¢ = 2,39 = 3, A9 = A. This means that we
obtain the formula for doubling the point (z1,y7) on F (if A? didn’t equal A,
we would be working on a new elliptic curve with A9 in place of A).

Since ¢, is a homomorphism given by rational functions, it is an endo-
morphism of F. Since ¢ = 0 in F,, the derivative of z? is identically zero.

Therefore, ¢, is not separable. |

The following result will be crucial in the proof of Hasse’s theorem in Chap-
ter 4 and in the proof of Theorem 3.2.

PROPOSITION 2.21
Let a # 0 be a separabk endom orphism of an elliptic curve F . Then

dega = #Ker(a),

where K er(a) is the kemel of the hom om orphism « : F(K) — E(K).
If o # 0 is not separable, then

deg v > #Ker().

© 2008 by Taylor & Francis Group, LLC



54 CHAPTER 2 THE BASIC THEORY

PROOF Write a(x,y) = (r1(x), yre(z)) with r(x) = p(z)/q(x), as above.
Then ] # 0, so p’q — pq’ is not the zero polynomial. B

Let S be the set of x € K such that (p¢'—p'q)(z) g(x) = 0. Let (a,b) € E(K)
be such that

1. a#0, b#£0, (a,b) # oo,

. deg (p(x) — aq(x)) = Max{deg(p), deg(q)} = deg(w),
a ¢ (S), and

(a,b) € a(E(K)).

Ll

Since pqg’ —p’q is not the zero polynomial, S is a finite set, hence its image under
«a is finite. The function r1 () is easily seen to take on infinitely many distinct
values as x runs through K. Since, for each z, there is a point (z,y) € F(K),
we see that a(F(K)) is an infinite set. Therefore, such an (a, b) exists.

We claim that there are exactly deg(«) points (z1,y1) € E(K) such that
a(z1,y1) = (a,b). For such a point, we have

p(931)
q(z1)

=a, yira(z1) =0

Since (a, b) # 0o, we must have q(z1) # 0. By Exercise 2.19, ro(x1) is defined.
Since b # 0 and yi72(x1) = b, we must have y; = b/re(xz1). Therefore, 1
determines y; in this case, so we only need to count values of x7.

By assumption (2), p(z) — aq(z) = 0 has deg(«) roots, counting multiplici-
ties. We therefore must show that p — aq has no multiple roots. Suppose that
2o is a multiple root. Then

p(zo) —agq(zo) =0 and  p'(z0) — aq'(wo) = 0.

Multiplying the equations p = aq and aq’ = p’ yields

ap(o)q (vo) = ap'(wo)q (o)

Since a # 0, this implies that zg is a root of pq’ — p'q, so xg € S. Therefore,
a = r1(xg) € m1(9), contrary to assumption. It follows that p — aq has no
multiple roots, and therefore has deg(«) distinct roots.

Since there are exactly deg(«) points (z1,y1) with a(x1,y1) = (a,b), the
kernel of « has deg(«) elements.

Of course, since « is a homomorphism, for each (a,b) € a(E(K)), there are
exactly deg(a) points (z1,y1) with a(z1,y1) = (a,b). The assumptions on
(a,b) were made during the proof to obtain this result for at least one point,
which suffices.

If o is not separable, then the steps of the above proof hold, except that
p' —aq is always the zero polynomial, so p(z) —aq(z) = 0 always has multiple
roots and therefore has fewer than deg(«) solutions. i
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THEOREM 2.22

Let £ ke an elliptic curve defined over a field K. Let « # 0 ke an endom or-
phism of E. Then o : E(K) — E(K) is surjctive.

REMARK 2.23 We definitely need to be working with K instead of K in
the theorem. For example, the Mordell-Weil theorem (Theorem 8.17) implies
that multiplication by 2 cannot be surjective on E(Q) if there is a point in
E(Q) of infinite order. Intuitively, working with an algebraically closed field
allows us to solve the equations defining « in order to find the inverse image
of a point.

PROOF Let (a,b) € E(K). Since a(co) = oo, we may assume that
(a,b) # oco. Let ri(z) = p(x)/q(x) be as above. If p(x) — ag(x) is not a
constant polynomial, then it has a root xg. Since p and ¢ have no common
roots, q(xo) # 0. Choose yo € K to be either square root of 3 + Axg + B.
Then a(xg,yo) is defined (Exercise 2.19) and equals (a,b’) for some &’. Since
V? = a3+ Aa+ B = b2, we have b = /. If b’ = b, we're done. If b/ = —b,
then a(zg, —yo) = (a,—b") = (a,b).

We now need to consider the case when p — aq is constant. Since E(K) is
infinite and the kernel of « is finite, only finitely many points of F(K) can
map to a point with a given z-coordinate. Therefore, either p(x) or ¢(z) is not
constant. If p and ¢ are two nonconstant polynomials, then there is at most
one constant a such that p—agq is constant (if @’ is another such number, then
(a'—a)q = (p—aq)— (p—d'q) is constant and (¢’ —a)p = a'(p—aq)—a(p—a’q)
is constant, which implies that p and ¢ are constant). Therefore, there are at
most two points, (a,b) and (a, —b) for some b, that are not in the image of
a. Let (a1,b1) be any other point. Then a(P;) = (ay,b;) for some P;. We
can choose (a1,by) such that (aq,b1)+ (a,b) # (a, £b), so there exists P» with
a(Py) = (a1,b1) + (a,b). Then a(Py — P1) = (a,b), and a(P; — P») = (a, —b).
Therefore, « is surjective.

For later applications, we need a convenient criterion for separability. If
(x,y) is a variable point on y? = 23 + Az + B, then we can differentiate y
with respect to x:

2uy’ = 322 + A.
Similarly, we can differentiate a rational function f(z,y) with respect to x:

d

o f(@y) = fola,y) + fy(@, )y,

where f, and f, denote the partial derivatives.
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LEMMA 2.24
Let E ke the elliptic curve 32 = 23 + Az + B. Fix a point (u,v) on E. W rite

(z,y) + (u,v) = (f(z,9), 9(z,y)),
where f(x,y) and g(z,y) are mtional functions of x,y (the coe cients depend

on (u,v)) and y is regarded as a function of x satisfying dy/dx = (322 +
A)/(2y). Then

PROOF The addition formulas give

fla,y) = (y_v)z—x—u

r—u

"y —v)(x —u) — —v)? — (x —u)3
%f(x,y):%(y )@ —u) = 2(y —v)" — (z —u)®

A straightforward but lengthy calculation, using the fact that 2yy’ = 322+ A,
yields

d
(z = w)(y—f(2,y) = 9(x,y))
= v(Au+ v’ —v* — Az — 2° +y®) +y(—Au — v’ +0* + Az +2° — ¢?).

Since (u, v) and (z,y) are on E, we have v? = u3+Au+B and y? = 23+ Az+B.
Therefore, the above expression becomes

v(~B+ B)+y(B - B) =0.

Therefore, y%f(x,y) = g(x,y). i

REMARK 2.25 Lemma 2.24 is perhaps better stated in terms of differ-
entials. It says that the differential dz/y is translation invariant. In fact, it
is the unique translation invariant differential, up to scalar multiples, for E.
See [109]. |

LEMMA 2.26
Letaq, ag, ag ke nonzero endom orphism s of an elliptic curve E with o +ag =
a3 . W rite

aj(@”ay) = (Rozj (v), ySaj (z)).
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Suppose there are constants ¢, , ¢q, such that

Ro() _ R,W)
Say (2) “ Sa, ()

= Ca,-

T hen
R, (z)

Sas ()

= Cq; + Casy-

PROOF  Let (x1,y1) and (x2,y2) be variable points on E. Write

(z3,y3) = (z1,9y1) + (72, 92),

where

(37173/1) = al(x,y), (x27y2) = Q‘2(x7y)'

57

Then x3 and y3 are rational functions of x1,y1,x2,y2, which in turn are

rational functions of x,y. By Lemma 2.24, with (u,v) = (22, y2),

0x3 n Oxs dy, _ W
Ory  Oyidxy  y1

Similarly,

0x3 n Ox3 dyo _ Y
Ory  Oy2 dxa Y2

By assumption,
dx j Yj
dx Ty

for j = 1,2. By the chain rule,

da}g . (9.1’3 dl’l 8333 dyl d.iCl 8563 d.%'g 85173 dyg dl’g

de Oz dx 0y, dxq dz Oxo dx 0ys dxo dx

Ys 1 Ys Y2
= ——Cq + — —Cay
Y1y Y2 Yy
Y3
= (Coé1 —|—Ca2)§.

Dividing by y3/y yields the result. |

REMARK 2.27 In terms of differentials (see the previous Remark), we
have (dz/y)oa is a translation-invariant differential on E. Therefore it must be
a scalar multiple c,dz/y of dx/y. It follows that every nonzero endomorphism

« satisfies the hypotheses of Lemma 2.26. |
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PROPOSITION 2.28
Let E e an elliptc curve defined over a field K, and ket n ke a nonzero
Integer. Suppose that m ulbplication by n on E is given by

n(z,y) = (Rn(2),ySn(2))

forall(x,y) € E(K), where R,, and S,, are rational functions. T hen

T herefore, m uldplication by n is separable if and only if n is not a muliplke
of the characteristic p of the field.

PROOF Since R_, = R, and S_,, = —S,,, we have R’  /S_, = —R! /S,.
Therefore, the result for positive n implies the result for negative n.

Note that the first part of the proposition is trivially true for n = 1. If it
is true for n, then Lemma 2.26 implies that it is true for n + 1, which is the

sum of n and 1. Therefore, B;n(g) = n for all n.

We have R), (z) # 0 if and only if n = R}, (x)/S,(z) # 0, which is equivalent
to p not dividing n. Since the definition of separability is that R] # 0, this

proves the second part of the proposition. 1

Finally, we use Lemma 2.26 to prove a result that will be needed in Sec-
tions 3.2 and 4.2. Let E be an elliptic curve defined over a finite field F,.
The Frobenius endomorphism ¢, is defined by ¢4(z,y) = (2?,y?). It is an
endomorphism of £ by Lemma 2.20.

PROPOSITION 2.29

Let F ke an elliptic curve defined over F;, where ¢ is a power of the prime p.
Letr and s ke integers, not both 0. The endom oxphism r¢, + s is separable if
and only ifpt s.

PROOF  Write the multiplication by » endomorphism as
r(z,y) = (Ry(2), ySy ().
Then

(Rrg, (@), ySrg, (@) = (¢qr) (@, y) = (R(), y* S} (x))
= (Rq(x), y(x® + Az + B)(q—l)/ng(x)) .

(s

Therefore,
erbq = R;~¢q/Sr¢q = ng_lR;n/Srd,q = 0.
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Also, ¢s = R./Ss = s by Proposition 2.28. By Lemma 2.26,
Ry ts/Srégts = Crogts = Cro, +¢s =0+ 5 =s.

Therefore, RL%JFS # 0 if and only if p 1 s. |

2.10 Singular Curves

We have been working with y? = 23 + Az 4+ B under the assumption that
23+ Az + B has distinct roots. However, it is interesting to see what happens
when there are multiple roots. It will turn out that elliptic curve addition
becomes either addition of elements in K or multiplication of elements in K *
or in a quadratic extension of K. This means that an algorithm for a group
E(K) arising from elliptic curves, such as one to solve a discrete logarithm
problem (see Chapter 5), will probably also apply to these more familiar
situations. See also Chapter 7. Moreover, as we’ll discuss briefly at the end of
this section, singular curves arise naturally when elliptic curves defined over
the integers are reduced modulo various primes.

We first consider the case where 23 + Az + B has a triple root at = 0, so
the curve has the equation

i

The point (0, 0) is the only singular point on the curve (see Figure 2.7). Since

Figure 2.7

y? = 23

any line through this point intersects the curve in at most one other point,
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(0,0) causes problems if we try to include it in our group. So we leave it out.
The remaining points, which we denote FE,;(K), form a group, with the group
law defined in the same manner as when the cubic has distinct roots. The
only thing that needs to be checked is that the sum of two points cannot be
(0,0). But since a line through (0,0) has at most one other intersection point
with the curve, a line through two nonsingular points cannot pass through
(0,0) (this will also follow from the proof of the theorem below).

THEOREM 2.30
Let E ke the curve 42 = 23 and ket E,,,(K) ke the nonsingular points on this
curve with coordinates in K, including the pointoo = (0:1:0). Themap

E.s(K)— K, (z,y)+~— f, oo +— 0
Yy

is a group isom orphism ketween E,, (K) and K , regarded as an additive group.

PROOF Lett = z/y. Then z = (y/x)? = 1/t and y = z/t = 1/t3.
Therefore we can express all of the points in E, s(K) in terms of the parameter
t. Let t = 0 correspond to (x,y) = oco. It follows that the map of the theorem
is a bijection. (Note that 1/t is the slope of the line through (0,0) and (z,y),
so this parameterization is obtained similarly to the one obtained for quadratic
curves in Section 2.5.4.)

Suppose (x1,y1) + (z2,92) = (r3,y3). We must show that ¢; + to = t3,
where t; = z;/y;. If (x1,11) # (x2,¥y2), the addition formulas say that

2
Y2 — Y1
r3 = | —m — T — Zo.
To — X1

Substituting z; = 1/t? and y; = 1/t3 yields

_3 —3\ 2
—2 —2 :
t2 - tl

A straightforward calculation simplifies this to
t32 = (t1 +t2) 2.

Similarly,

may be rewritten in terms of the t; to yield

t32 = (t; +ta) 3.
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Taking the ratio of the expressions for t5 2 and ts 3 gives
t3 =11 + to,

as desired.
If (x1,y1) = (x2,y2), the proof is similar. Finally, the cases where one or
more of the points (z;,y;) = oo are easily checked. i

@
NI

Figure 2.8

y? = a3 4 22

We now consider the case where 23 + Az + B has a double root. By trans-
lating x, we may assume that this root is 0 and the curve E has the equation

y2 = x2(:E + a)

for some a # 0. The point (0,0) is the only singularity (see Figure 2.8). Let
E,s(K) be the nonsingular points on E with coordinates in K, including the
point co. Let a® = a (so a might lie in an extension of K). The equation for
FE may be rewritten as
Y 2
(—) =a-+x.

x
When z is near 0, the right side of this equation is approximately a. Therefore,
E is approximated by (y/z)? = a, or y/x = +a near x = 0. This means that
the two “tangents” to E at (0,0) are

y=axr and y=—ax

(for a different way to obtain these tangents, see Exercise 2.20).
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THEOREM 2.31

Let F ke the curve 42 = 2%(z + a) with 0 # a € K. Let E,4(K) ke the
nonsingular points on F with coordinates n K. Let a® = a. Consider the
m ap
Y+ oax

, 00+ 1.
Y — Qx

Y (z,y) =

1. Ifa € K, then ¢ gives an isom orphism from F,s(K) to K*, considered
as a m ulbplicative group.

2. Ifa ¢ K, then v gives an isom orphism
Ens(K) ~{u+av|u,ve K, u* —av® =1},

where the right hand side is a group under m uldplication .

PROOF  Let

Yyt ox

t .
Yy —ax

This may be solved for y/x to obtain

Y t+1
Z=a—.
x t—1
Since z + a = (y/x)?, we obtain
. 4ot and APt +1)
T -1y RN CESVE

(the second is obtained from the first using y = x(y/z)). Therefore, (z,y)
determines t and ¢ determines (z,y), so the map v is injective, and is a
bijection in case (1).

In case (2), rationalize the denominator by multiplying the numerator and
denominator of (y + ax)/(y — ax) by y + ax to obtain an expression of the

form u + aw:
(y + ax)

(y — o)
We can change the sign of o throughout this equation and preserve the equal-
ity. Now multiply the resulting expression by the original to obtain

=Uu -+ av.

(y +ax) (y —ax) _
(y —az) (y + ax)

u? — av? = (u+ av)(u — av) =

Conversely, suppose u? — av? = 1. Let

(u—|—1)2 <u+1)
€T = —a,, y: xZ.
v v
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Then (z,y) is on the curve E and

/) +a ut+ldav
Vla,y) = (y/z) —a  u+1—av —utav

(the last equality uses the fact that u? — av? = 1). Therefore, 9 is surjective,
hence is a bijection in case (2), too.
It remains to show that 1) is a homomorphism. Suppose (1, y1)+ (22, y2) =

(x3,y3). Let
_ Yy tar

t; .
Yi — @y

We must show that t1t5 = t3.
When (z1,y1) # (w2,y2), we have

2
(yQ—Zh)
I3 — —a— 1 — T2.

To — X1
40t 403t (t; + 1
Substituting x; = (75‘04—11)2 and y; = % and simplifying yields
4t3 4t1t2
= . 2.11
(t3 —1)2  (t1ta — 1) ( )
Similarly,
—Y3 = (M) (3 —21) + 11
ro — X1
yields

40(3t3(t3 + 1) . 4Oé3t1t2(t1t2 + 1)
(ts— 1)  (tata —1)3
The ratio of this equation and (2.11) yields
ts—1 ity —1
ts+1  tito+1

This simplifies to yield
t1t2 = t37
as desired.
The case where (x1,y1) = (x2,y2) is similar, and the cases where one or

more of the points is co are trivial. This completes the proof. |

One situation where the above singular curves arise naturally is when we
are working with curves with integral coefficients and reduce modulo various
primes. For example, let E be y? = z(x + 35)(z — 55). Then we have

E mod 5: y? = a3,
E mod 7: y? =2%(x +
T+

),
E mod 11: y* = 2%( .

1
2)
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The first case is treated in Theorem 2.30 and is called additive reduction.
The second case is split multiplicative reduction and is covered by The-
orem 2.31(1). In the third case, a ¢ F11, so we are in the situation of The-
orem 2.31(2). This is called nonsplit multiplicative reduction. For all
primes p > 13, the cubic polynomial has distinct roots mod p, so £ mod p is
nonsingular. This situation is called good reduction.

2.11 Elliptic Curves mod n

In a few situations, we’ll need to work with elliptic curves mod n, where n
is composite. We’ll also need to take elliptic curves over Q and reduce them
mod n, where n is an integer. Both situations are somewhat subtle, as the
following three examples show.

Example 2.7
Let E be given by
v’ =2 —z+1 (mod 5%).

Suppose we want to compute (1,1) + (21,4). The slope of the line through
the two points is 3/20. The denominator is not zero mod 25, but it is also
not invertible. Therefore the slope is neither infinite nor finite mod 25. If we
compute the sum using the formulas for the group law, the z-coordinate of
the sum is

3\ 2
(%> —1-21=0c0 (mod 25).

But (1,1) + (1,24) = oo, so we cannot also have (1,1) + (21,4) = oc. [

Example 2.8
Let E be given by
y> =2 -2 +1 (mod 35).

Suppose we want to compute (1,1) + (26,24). The slope is 23/25, which is
infinite mod 5 but finite mod 7. Therefore, the formulas for the sum yield a
point that is oo mod 5 but is finite mod 7. In a sense, the point is partially
at co. We cannot express it in affine coordinates mod 35. One remedy is to
use the Chinese Remainder Theorem to write

E(Zs35) = E(Zs) ® E(Zr)

and then work mod 5 and mod 7 separately. This strategy works well in the
present case, but it doesn’t help in the previous example.
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Example 2.9
Let E be given by

y? =2% +32 -3

over Q. Suppose we want to compute

o7l 16379

1,1 — =
(1, )+(361’ 6859

).

Since the points are distinct, we compute the slope of the line through them
in the usual way. This allows us to find the sum. Now consider E mod 7.
The two points are seen to be congruent mod 7, so the line through them
mod 7 is the tangent line. Therefore, the formula we use to add the points
mod 7 is different from the one used in Q. Suppose we want to show that the
reduction map from F(Q) to E(F7) is a homomorphism. At first, it would
seem that this is obvious, since we just take the formulas for the group law
over (Q and reduce them mod 7. But the present example says that sometimes
we are using different formulas over Q and mod 7. A careful analysis shows
that this does not cause problems, but it should be clear that the reduction
map is more subtle than one might guess. I

The remedy for the above problems is to develop a theory of elliptic curves
over rings. We follow [74]. The reader willing to believe Corollaries 2.32, 2.33,
and 2.34 can safely skip the details in this section.

Let R be a ring (always assumed to be commutative with 1). A tuple of
elements (z1,z2,...) from R is said to be primitive if there exist elements
r1,79, - € R such that

7"1.261+7“2l'2+"':1.

When R = Z, this means that gcd(z1,22,...) = 1. When R = Z,,, primitivity
means that ged(n, 1, z2,...) = 1. When R is a field, primitivity means that
at least one of the z; is nonzero. In general, primitivity means that the ideal
generated by x1,xs,... is R. We say that two primitive triples (z,y, z) and
(2,9, 2") are equivalent if there exists a unit u € R* such that

(', vy, 2) = (ux,uy, uz)

(in fact, it follows easily from the existence of r, s, t with ra’ + sy’ +tz' =1
that any w satisfying this equation must be a unit). Define 2-dimensional
projective space over R to be

P?(R) = {(z,y,2) € R*|(x,y, z) is primitive} mod equivalence.

The equivalence class of (x,y, z) is denoted by (z : y : z).
If R is a field, P?(R) is the same as that defined in Section 2.3. If (x :
y : z) € P?(Q), we can multiply by a suitable rational number to clear
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denominators and remove common factors from the numerators and therefore
obtain a triple of integers with gcd=1. Therefore, P?(Q) and P?(Z) will be
regarded as equal. Similarly, if R is a ring with

ZCRCQ,

then P?(R) = P?(Z).
In order to work with elliptic curves over R, we need to impose two condi-
tions on R.

1. 2¢€ R*

2. If (a;5) is an m x n matrix such that (a11,a12,...,amy) is primitive and
such that all 2 x2 subdeterminants vanish (that is, a;jaxe—airar; = 0 for
all 4,7, k, ), then some R-linear combination of the rows is a primitive
n-tuple.

The first condition is needed since we’ll be working with the Weierstrass equa-
tion. In fact, we should add the condition that 3 € R* if we want to change
an arbitrary elliptic curve into Weierstrass form. Note that Z does not satisfy
the first condition. This can be remedied by working with

X

This is a ring. As pointed out above, PQ(Z(Q)) equals P2(Z), so the introduc-
tion of Z(y) is a minor technicality.

The second condition is perhaps best understood when R is a field. In this
case, the primitivity of the matrix simply means that at least one entry is
nonzero. The vanishing of the 2 x 2 subdeterminants says that the rows are
proportional to each other. The conclusion is that some linear combination
of the rows (in this case, some row itself) is a nonzero vector.

When R = Z, the primitivity of the matrix means that the gcd of the
elements in the matrix is 1. Since the rows are assumed to be proportional,
there is a vector v and integers a4, ..., a,, such that the ith row is a;v. The
m-tuple (a1, ..., a,) must be primitive since the ged of its entries divides the
gcd of the entries of the matrix. Therefore, there is a linear combination of
the a;’s that equals 1. This means that some linear combination of the rows
of the matrix is v. The vector v is primitive since the gcd of its entries divides
the ged of the entries of the matrix. Therefore, we have obtained a primitive
vector as a linear combination of the rows of the matrix. This shows that
Z satisfies the second condition. The same argument, slightly modified to
handle powers of 2, shows that Z ) also satisfies the second condition.

In general, condition 2 says that projective modules over R of rank 1 are
free (see [74]). In particular, this holds for local rings, for finite rings, and for
Z 5. These suffice for our purposes.
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For the rest of this section, assume R is a ring satisfying 1 and 2. An
elliptic curve F over R is given by a homogeneous equation

y2z = a® + Azz® + B2

with A, B € R such that 443 4+ 27B? € R*. Define
E(R) ={(z:y:2) € P’(R)|y°z = 2° + Azz® + Bz*}.

The addition law is defined in essentially the same manner as in Section 2.2,
but the formulas needed are significantly more complicated. To make a long
story short (maybe not so short), the answer is the following.

GROUP LAW
Let (x; : y; : 2;) € E(R) ori = 1,2. Consider the ©llowing three sets of
equations:

1.

vy = (z1y2 — Tay1) (Y122 + yo21) + (2122 — T221) Y12
—A(z129 + T221)(T120 — T221) — 3B(w122 — T221)21 22

Ys = —31131332(951y2 - 33291) - ylyz(ylzz - yZZl) - A(ﬂflyz - w2y1)z1z2
+A(z122 + 2221) (Y122 — Y221) + 3B (Y122 — y221)2122

2y = 3x122(2122 — 2221) — (Y122 + Y221) (Y122 — Y221)

-|—A(JJ122 — .17221)2122

I1.

1

T3 = Y1y2(T1y2 + T2y1) — Ar122(Y122 + y221)
—A(z1y2 + w291 ) (122 + T221) — 3B(T1Y2 + T2Y1) 2122
—3B(w122 + m221) (Y122 + yaz1) + A% (Y122 + Y221)2122
Yy = yiys + 3Axtxs + 9Bx wo (1120 + T221)
—A2x1zQ(x122 + 2x921) — A2x221(2xlzg + x921)
—3ABz123(m120 + 21) — (A® +9B%)27 23
25 = 3x1xa(1ye + T2y1) + y1y2(v122 + y221) + A(z1y2 + 22y1) 21 22
+A(x122 + 2221) (Y122 + Y221) + 3B(y122 + Y221) 2122

I11.

2y = (v1y2 + 22y1)(T1Y2 — T201) + Az172(2122 — T221)

+3B(CE‘1ZQ + 33'221)(.%'122 — .7}'221) — AZ(.ZClZQ — LCQZl)ZlZQ
Y3 = (T1y2 — Zoy1)y1y2 — 3Ax122(y122 — Y221)
+A(z1y2 + 22y1)(T122 — T221) + 3B(T1Y2 — T2y1)2122

—33(90122 + 90221)(1/122 - yzzl) + Az(ylzz - yzzl)zlzz
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Zg’ = —(z1y2 + 22y1) (Y122 — Y221) — (T122 — T221) Y192

—A(:clzg + .26221)(.%122 - .’,6221) - 3B($122 - .26221)2122

Then the m atrix

Ty Yy 2

2l

«Ig/ yéll Zé//
is prim idve and all2 X 2 sulbdeterm nants vanish. Take a prin itive R-linear
com bination (z3, Y3, 23) of the rows. D efine

(371 Iy1 . 2’1) + (.’L‘Q . y2 . ZQ) = (ZB3 . yg . 23).
A Iso, define

—<$1 cUY 21) = (.CCl LYy Zl).
Then E(R) is an abkelian group under this definition of point addition. The
identity element is (0: 1:0).

For some of the details concerning this definition, see [74]. The equations
are deduced (with a slight correction) from those in [18]. A similar set of
equations is given in [72].

When R is a field, each of these equations can be shown to give the usual
group law when the output is a point in P?(R) (that is, not all three coor-
dinates vanish). If two or three of the equations yield points in P?(R), then
these points are equal (since the 2 x 2 subdeterminants vanish). If R is a ring,
then it is possible that each of the equations yields a nonprimitive output
(for example, perhaps 5 divides the output of I, 7 divides the output of II,
and 11 divides the output of III). If we are working with Z or Z), this is
no problem. Simply divide by the gcd of the entries in an output. But in an
arbitrary ring, gcd’s might not exist, so we must take a linear combination to
obtain a primitive vector, and hence an element in P?(R).

Example 2.10
Let R = Zs5 and let E be given by

y> =2 —z+1 (mod 5%).

Suppose we want to compute (1,1) + (21,4), as in Example 2.7 above. Write
the points in homogeneous coordinates as

(x1:1:21)=(1:1:1), (xa:ya:22)=(21:4:1).
Formulas I, II, III yield

(xé’nyé? Zé) = (57 2370)
(:Cg, yg? Z:/%/) = (57 8, 0)
(x4 y3', 28") = (20,12,0),

© 2008 by Taylor & Francis Group, LLC



SECTION 2.11 ELLIPTIC CURVES MOD N 69

respectively. Note that these are all the same point in P?(Zg5) since
(5,23,0) = 6(5,8,0) = 4(20,12,0).

If we reduce the point (5 : 8 : 0) mod 5, we obtain (0:3:0) = (0:1:0),
which is the point co. The fact that the point is at infinity mod 5 but not
mod 25 is what caused the difficulties in our calculations in Example 2.7. [

Example 2.11
Let E be an elliptic curve. Suppose we use the formulas to calculate

(0:1:0)4+(0:1:0).
Formulas I, II, III yield
(0,0,0), (0,1,0), (0,0,0),

respectively. The first and third outputs do not yield points in projective
space. The second says that

(0:1:0)4+(0:1:0)=(0:1:0).

This is of course the rule co + 0o = oo from the usual group law on elliptic
curves. [l

The present version of the group law allows us to work with elliptic curves
over rings in theoretical settings. We give three examples.

COROLLARY 2.32
Letn; and ny be odd ntegers with ged(ny,ngy) = 1. Let F be an elliptic curve
defined over Z,,,,, - Then there is a group isom orphism

E(Zy,n,) = E(Zn,) ® E(Zy,).
PROOF Suppose that E is given by y?z = 23 + Axz? 4+ Bz® with A, B €
Znin, and 4A% +27B* € Z . . Then we can regard A and B as elements of
Z,, and we have 44 +27B? € Z) . Therefore, we can regard E as an elliptic

curve over Z,, so the statement of the corollary makes sense.
The Chinese remainder theorem says that there is an isomorphism of rings

Zpin, 22y, ©L,,

given by
x mod ning «— (x mod ny, z mod nsg).

© 2008 by Taylor & Francis Group, LLC



70 CHAPTER 2 THE BASIC THEORY

This yields a bijection between triples in Z,,,, and pairs of triples, one in
Z,, and one in Z,,. It is not hard to see that primitive triples for Z, ,,
correspond to pairs of primitive triples in Z,,, and Z,,,. Moreover,

v’z = 2% + Azz® + Bz®  (mod ning)
y?z = 2% + Axz® + B2z®  (mod ny)
y?z = 23 + Axz? + B2 (mod ny)
Therefore, there is a bijection
w - E(Zn1n2) - E(an) D E(Zn2)

It remains to show that 1 is a homomorphism. Let Py, Py € E(Z,,,,) and let
P; = P, + P,. This means that there is a linear combination of the outputs
of formulas I, II, IIT that is primitive and yields Ps;. Reducing all of these
calculations mod n; (for i = 1,2) yields exactly the same result, namely the
primitive point P3; (mod n;) is the sum of P; (mod n;) and P, (mod n;).
This means that ¢(Ps) = ¥ (P1) + ¢¥(P2), so v is a homomorphism.

COROLLARY 2.33
Let F e an elliptic curve over Q given by
y? =234+ Az + B
with A, B € Z . Letn ke a positive odd integer such that ged(n, 443 +27B2)

1. Represent the elem ents of E(Q) as prim itive triples (x : y : 2) € P2(Z).
The map

red, : E(Q) - E(Zn)
(r:y:2z) — (x:y:2) (modn)

is a group hom om oxphigm .
PROOF If P, P, € E(Q) and P, + P, = P5, then Pj5 is a primitive point

that can be expressed as a linear combination of the outputs of formulas I, II,
ITI. Reducing all of the calculations mod n yields the result. |

Corollary 2.33 can be generalized as follows.

COROLLARY 2.34
Let R ke a ring and kt ] ke an idealof R. Assume that both R and R/I
satisfy conditions (1) and (2) on page 66. Let ' ke given by

yiz = a3 + Azz® + B23
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with A, B € R and assum e there exists r € R such that
(4A% 4+ 27B*)r —1 € I.
Then the m ap

rd; : F(R) — E(R/I)
(x:y:2) — (z:y:2z) modI

is a group hom om orphism .

PROOF  The proof is the same as for Corollary 2.33, with R in place of
Z and mod I in place of mod n. The condition that (443 +27B%)r —1 € I
for some r is the requirement that 443 + 27B? is a unit in R/I, which was

required in the definition of an elliptic curve over the ring R/I.

Exercises

2.1 (a) Show that the constant term of a monic cubic polynomial is the
negative of the product of the roots.

(b) Use (a) to derive the formula for the sum of two distinct points
Py, P, in the case that the x-coordinates ;1 and x5 are nonzero, as
in Section 2.2. Note that when one of these coordinates is 0, you
need to divide by zero to obtain the usual formula.

2.2 The point (3,5) lies on the elliptic curve E : y? = 2% — 2, defined over
Q. Find a point (not oo) with rational, nonintegral coordinates in (Q).

2.3 The points P = (2,9), @ = (3,10), and R = (—4, —3) lie on the elliptic
curve F : y? = 23 + 73.
(a) Compute P+ @ and (P + Q) + R.

(b) Compute Q + R and P + (Q + R). Your answer for P + (Q + R)
should agree with the result of part (a). However, note that one
computation used the doubling formula while the other did not use
it.

2.4 Let E be the elliptic curve y?> = x3 — 34x + 37 defined over Q. Let
P=(1,2) and Q = (6, 7).

(a) Compute P + Q.
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(b) Note that P = @ (mod 5). Compute 2P on E mod 5. Show that
the answer is the same as (P+@)) mod 5. Observe that since P = @,
the formula for adding the points mod 5 is not the reduction of the
formula for adding P+(Q). However, the answers are the same. This
shows that the fact that reduction mod a prime is a homomorphism
is subtle, and this is the reason for the complicated formulas in
Section 2.11.

2.5 Let (x,y) be a point on the elliptic curve E given by y? = 23 + Ax + B.
Show that if y = 0 then 322 + A # 0. (Hnt: What is the condition for
a polynomial to have x as a multiple root?)

2.6 Show that three points on an elliptic curve add to oo if and only if they
are collinear.

2.7 Let C be the curve u? + v? = ¢? (1 + duQUQ), as in Section 2.6.3. Show
that the point (c¢,0) has order 4.

2.8 Show that the method at the end of Section 2.2 actually computes kP.
(Hint Use induction on the length of the binary expansion of k. If
k = ko + 2ki + 4ky + - - - + 2%a,, assume the result holds for k¥’ = ko +
2k1 + 4ko 4+ - - - + 2£_16Lg_1.)

2.9 If P = (z,y) # oo is on the curve described by (2.1), then —P is the
other finite point of intersection of the curve and the vertical line through
P. Show that —P = (z, —a;x — a3 — y). (Hint: This involves solving
a quadratic in y. Note that the sum of the roots of a monic quadratic
polynomial equals the negative of the coefficient of the linear term.)

2.10 Let R be the real numbers. Show that the map (x,y,2) — (x : y : 2)
gives a two-to-one map from the sphere 22 4+ 32 4+ 22 = 1 in R3 to P%{.
Since the sphere is compact, this shows that P% is compact under the
topology inherited from the sphere (a set is open in P% if and only if
its inverse image is open in the sphere).

2.11 (a) Show that two lines a1z + b1y + c1z2 = 0 and asx + boy + c2z = 0
in two-dimensional projective space have a point of intersection.

(b) Show that there is exactly one line through two distinct given points
in P2
2.12 Suppose that the matrix

a1 bl
M = an b2
as b3

has rank 2. Let (a,b,c) be a nonzero vector in the left nullspace of M,
so (a,b,c)M = 0. Show that the parametric equations

r=a1u+biv, y=asu+bv, z=asu-+ bsv,
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describe the line ax + by + cz = 0 in P%. (It is easy to see that the
points (z : y : z) lie on the line. The main point is that each point on
the line corresponds to a pair (u,v).)

2.13 (a) Put the Legendre equation y? = x(z — 1)(x — \) into Weierstrass
form and use this to show that the j-invariant is

g(A2—A+1)°

-
J N2\ —1)2

(b) Show that if j # 0,1728 then there are six distinct values of A
giving this j, and that if A is one such value then the full set is
1 1 AA-1

A=, 1=\ .
U et v L w

(c) Show that if j = 1728 then A = —1,2,1/2, and if j = 0 then
M —A+1=0.

2.14 Consider the equation u? — v? = 1, and the point (ug,vo) = (1,0).

(a) Use the method of Section 2.5.4 to obtain the parameterization

m? + 1 2m
u= , V= ————.
m2 —1 m2 — 1
(b) Show that the projective curve u? — v? = w? has two points at

infinity, (1:1:0) and (1:—1:0).

(c) The parameterization obtained in (a) can be written in projective
coordinates as (u:v:w) = (m?+1:2m:m? —1) (or (m? +n?:
2mn : m? — n?) in a homogeneous form). Show that the values
m = £1 correspond to the two points at infinity. Explain why this
is to be expected from the graph (using real numbers) of u?—v? = 1.
(H int: Where does an asymptote intersect a hyperbola?)

2.15 Suppose (ug,vg, wo) = (ug,0,0) lies in the intersection
av’ +b? =e, cu?®+dw? = f.

(a) Show that the procedure of Section 2.5.4 leads to an equation of
the form “square = degree 2 polynomial in m.”

(b) Let F = au® + bv? = e and G = cu® + dw? = f. Show that the

F, F, F,

Gy Gy Gy

rank is less than 2, this means that the point is a singular point.

Jacobian matrix at (ug,0,0) has rank 1. Since the

2.16 Show that the cubic equation 3 4+ y®> = d can be transformed to the
elliptic curve y? = z3 — 432d>.
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2.17 (a) Show that (z,y) — (x,—y) is a group homomorphism from E to
itself, for any elliptic curve in Weierstrass form.

(b) Show that (z,y) — ((x,—y), where ( is a nontrivial cube root of
1, is an automorphism of the elliptic curve y? = 23 + B.

¢ ow that (x,y) — (—x,1y), where 1 = —1, 1S an automorphism
Show th j here 2 1, i t hi

of the elliptic curve y? = 23 + Ax.

2.18 Let K have characteristic 3 and let E be defined by y? = 23 + as2? +

asx + ag. The j-invariant in this case is defined to be
ag

] =
a3a? — asag — a3

(this formula is false if the characteristic is not 3).

(a) Show that either as # 0 or a4 # 0 (otherwise, the cubic has a triple
root, which is not allowed).

(b) Show that if as # 0, then the change of variables 1 = x — (a4/a2)
yields an equation of the form y? = 23 + abz? + ai. This means
that we may always assume that exactly one of as and a4 is 0.

(c) Show that if two elliptic curves y?> = 3 + as2? + ag and y* =
o3 + abx? + af have the same j-invariant, then there exists u € K"
such that a} = p?as and af = plag.

(d) Show that if y?> = 23 + a4z + ag and y?> = 2® + a}j2? + af are
two elliptic curves (in characteristic 3), then there is a change of
variables y — ay, x +— bx + ¢, with a,b € K" and ¢ € K, that
changes one equation into the other.

(e) Observe that if az = 0 then j = 0 and if a4 = 0 then j = —a3/as.
Show that every element of K appears as the j-invariant of a curve
defined over K.

(f) Show that if two curves have the same j-invariant then there is a
change of variables over K that changes one into the other.

2.19 Let a(z,y) = (p(x)/q(x), y-s(x)/t(z)) be an endomorphism of the ellip-
tic curve E given by y? = 23 + Az + B, where p, q, s,t are polynomials
such that p and ¢ have no common root and s and ¢ have no common
root.

(a) Using the fact that (z,y) and a(z,y) lie on E, show that
(2 + Az + B)s(x)*  u(x)
t(x)? - q(@)?

for some polynomial u(x) such that ¢ and u have no common root.
(H Int: Show that a common root of u and ¢ must also be a root of

p.)
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(b) Suppose t(zg) = 0. Use the facts that 23 + Ax + B has no multiple
roots and all roots of t? are multiple roots to show that g(x¢) = 0.
This shows that if ¢(z) # 0 then a(xg,yo) is defined.

2.20 Consider the singular curve y? = 23 + az? with a # 0. Let y = mx
be a line through (0,0). Show that the line always intersects the curve
to order at least 2, and show that the order is 3 exactly when m? = a.
This may be interpreted as saying that the lines y = ++/ax are the two

tangents to the curve at (0,0).

2.21 (a) Apply the method of Section 2.5.4 to the circle u? + v?> = 1 and
the point (—1,0) to obtain the parameterization

1—1¢2 2t
U = —— v = .
1+ ¢2’ 14 t2

(b) Suppose z,y, z are integers such that 22 +y? = 22, ged(z,y,2) = 1,
and x is even. Use (a) to show that there are integers m,n such

that

T = 2mn, y:mQ—nQ, z=m?+n

Also, show that ged(z,y,z) = 1 implies that ged(m,n) = 1 and
that m # n (mod 2).

2.22 Let p(x) and ¢(z) be polynomials with no common roots. Show that

d (P _
dz \ q(z)
(that is, the identically 0 rational function) if and only if both p/(z) = 0

and ¢'(x) = 0. (If p or ¢ is nonconstant, then this can happen only in
positive characteristic.)

2.23 Let E be given by y? = 23+ Az + B over a field K and let d € K*. The
twist of E by d is the elliptic curve E@ given by y? = 2® + Ad?x + Bd®.
(a) Show that j(E(®) = j(E).
(b) Show that E(¥) can be transformed into E over K (v/d).
(c) Show that E(@ can be transformed over K to the form dy? =

2.24 Let a, 8 € Z be such that ged(a, 8) = 1. Assume that a = —1 (mod 4)
and 3 =0 (mod 32). Let E be given by y? = z(z — a)(z — 3).

(a) Let p be prime. Show that the cubic polynomial z(x — «)(x — ()
cannot have a triple root mod p.
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(b) Show that the substitution
r =4z, y=28y +4x;

changes F into E7, given by
af

2 —
x] + 16 1.

—B—-—a—-1

yi + 1y =27 + 1

(c¢) Show that the reduction mod 2 of the equation for E; is
yi + 21y = o) + ex?

for some e € Fy. This curve is singular at (0,0).

(d) Let v be a constant and consider the line y; = yx;. Show that if
7% + 7 = e, then the line intersects the curve in part (c) to order
3, and if 42 + v # e then this line intersects the curve to order 2.

(e) Show that there are two distinct values of v € Fy such that v2+~ =
e. This implies that there are two distinct tangent lines to the curve
FE; mod 2 at (0,0), as in Exercise 2.20.

We take the property of part (e) to be the definition of multiplicative
reduction in characteristic 2. Therefore, parts (a) and (e) show that
the curve E; has good or multiplicative reduction at all primes. A
semistable elliptic curve over Q is one that has good or multiplicative
reduction at all primes, possibly after a change of variables (over Q)
such as the one in part (b). Therefore, F is semistable. See Section 15.1
for a situation where this fact is used.
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Chapter 3

Torsion Points

The torsion points, namely those whose orders are finite, play an important
role in the study of elliptic curves. We’ll see this in Chapter 4 for elliptic
curves over finite fields, where all points are torsion points, and in Chapter
8, where we use 2-torsion points in a procedure known as descent. In the
present chapter, we first consider the elementary cases of 2- and 3-torsion,
then determine the general situation. Finally, we discuss the important Weil
and Tate-Lichtenbaum pairings.

3.1 Torsion Points

Let E be an elliptic curve defined over a field K. Let n be a positive integer.
We are interested in

En]={P € E(K)|nP = oo}

(recall that K = algebraic closure of K). We emphasize that E[n] contains
points with coordinates in K, not just in K.

When the characteristic of K is not 2, E can be put in the form y? = cubic,
and it is easy to determine E[2]. Let

y? = (z —e1)(x — ea)(z — e3),

with eq, es,e3 € K. A point P satisfies 2P = oo if and only if the tangent line
at P is vertical. It is easy to see that this means that y = 0, so

E[2] = {OO, (6170)7 (6250)7 (6370)}'

As an abstract group, this is isomorphic to Zs @ Zs.
The situation in characteristic 2 is more subtle. In Section 2.8 we showed
that E can be assumed to have one of the following two forms:

(I) y*4ay+a®+ax®+as=0 or (II) y*+aszy+z’+asr+as=0.

77
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In the first case, ag # 0 and in the second case, a3 # 0 (otherwise the curves
would be singular). If P = (x,y) is a point of order 2, then the tangent at
P must be vertical, which means that the partial derivative with respect to
y must vanish. In case I, this means that = 0. Substitute z = 0 into (I)
to obtain 0 = y* + ag = (y + /as)?. Therefore (0, /ag) is the only point of
order 2 (square roots are unique in characteristic 2), so

E[2] = {00, (0, /ag)}-

As an abstract group, this is isomorphic to Zs.
In case II, the partial derivative with respect to y is az # 0. Therefore,
there is no point of order 2, so

E[2] = {oo}.

We summarize the preceding discussion as follows.

PROPOSITION 3.1
Let I/ ke an elliptic curve over a fied K . If the characteristic of K isnot 2,
then

If the characteristc of K is 2, then

E[2] ~0 or Zs.

Now let’s look at F[3]. Assume first that the characteristic of K is not 2
or 3, so that E can be given by the equation y? = 2% + Az + B. A point P
satisfies 3P = oo if and only if 2P = —P. This means that the z-coordinate
of 2P equals the z-coordinate of P (the y-coordinates therefore differ in sign;
of course, if they were equal, then 2P = P, hence P = ~0). In equations, this
becomes
322+ A

2y
Using the fact that y? = 23 + Az + B, we find that

m? —2x =z, where m =

(322 + A)? = 122(2® + Az + B).
This simplifies to
3z* +6A42% + 12Bxr — A? = 0.

The discriminant of this polynomial is —6912(4 A3 +27B2%)?2, which is nonzero.
Therefore the polynomial has no multiple roots. There are 4 distinct values
of z (in K), and each z yields two values of y, so we have eight points of order
3. Since oo is also in FE[3], we see that F[3] is a group of order 9 in which
every element is 3-torsion. It follows that

E[S] ~ Z3 SY) Z3.
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The case where K has characteristic 2 is Exercise 3.2.

Now let’s look at characteristic 3. We may assume that E has the form
y? = 23 + asx? + asx + ag. Again, we want the z-coordinate of 2P to equal
the z-coordinate of P. We calculate the z-coordinate of 2P by the usual
procedure and set it equal to the z-coordinate x of P. Some terms disappear

because 3 = 0. We obtain

(2@233 + ay

2
% ) —a9 =3x =0.

This simplifies to (recall that 4 = 1)
a2x3 + asag — ai = 0.

Note that we cannot have as = a4 = 0 since then 23 + ag = (z + aé/g)?’ has
multiple roots, so at least one of as, a4 is nonzero.

If a; = 0, then we have —a? = 0, which cannot happen, so there are no
values of z. Therefore E[3] = {co} in this case.

If as # 0, then we obtain an equation of the form as (23 +a) = 0, which has
a single triple root in characteristic 3. Therefore, there is one value of x, and
two corresponding values of y. This yields 2 points of order 3. Since there
is also the point co, we see that F[3] has order 3, so E[3| ~ Z3 as abstract
groups.

The general situation is given by the following.

THEOREM 3.2
Let I/ e an elliptic curve over a field K and ktn ke a positve nteger. If
the characteristic of K does not divide n, or is 0, then

En|~7Z,®Z,.
If the characteristic of K isp > 0 and p|n, write n = p"n’ with ptn’. Then

E[n] ~ "2, ®L, or Z,PZL,.

The theorem will be proved in Section 3.2.

An elliptic curve E in characteristic p is called ordinary if E[p] ~ Z,. It
is called supersingular if E[p] ~ 0. Note that the terms “supersingular”
and “singular” (as applied to bad points on elliptic curves) are unrelated.
In the theory of complex multiplication (see Chapter 10), the “singular” j-
invariants are those corresponding to elliptic curves with endomorphism rings
larger than Z, and the “supersingular” j-invariants are those corresponding to
elliptic curves with the largest possible endomorphism rings, namely, orders
in quaternion algebras.

Let n be a positive integer not divisible by the characteristic of K. Choose
a basis {1, f2} for E[n| ~ Z, &Z,,. This means that every element of F[n] is
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expressible in the form mq 37 + mo3 with iriegers my, ma. Note that mq, mo
are uniquely determined mod n. Let o : F(K) — E(K) be a homomorphism.
Then a maps E[n] into E[n]. Therefore, there are a,b, ¢,d € Z,, such that

a(f1) = abfi + cB2,  a(B2) = b1 + dfs.
Therefore each homomorphism « : E(K) — E(K) is represented by a 2 x 2

matrix
_f(ab
oy = cd)

Composition of homomorphisms corresponds to multiplication of the corre-
sponding matrices.

In many cases, the homomorphism « will be taken to be an endomorphism,
which means that it is given by rational functions (see Section 2.9). But «
can also come from an automorphism of K that fixes K. This leads to the im-
portant subject of representations of Galois groups (that is, homomorphisms
from Galois groups to groups of matrices).

Example 3.1
Let E be the elliptic curve defined over R by y? = 23 — 2, and let n = 2.
Then

E[2] = {0, (2'/%,0),(¢2'/%,0), (¢?2'/%,0)},

where ( is a nontrivial cube root of unity. Let

B = (213,0), Ba = (¢2'/3,0).

Then {31, B2} is a basis for E[2], and #3 = (¢221/3,0) = 1 + S,.

Let a : E(C) — E(C) be complex conjugation: «(z,y) = (Z,7y), where
the bar denotes complex conjugation. It is easy to verify that « is a homo-
morphism. In fact, since all the coefficients of the formulas for the group
law have real coefficients, we have P, + P, = P, + P». This is the same as

a(Py) + a(Py) = a(Py + P2). We have
a(Bf1) =1-p1+0-32, a(B2)=0F=1-01+1:ps.

. : 11 . . .
Therefore we obtain the matrix as = ( 01 ) Note that a o « is the identity,
which corresponds to the fact that a2 is the identity matrix mod 2. I
=

3.2 Division Polynomials

The goal of this section is to prove Theorem 3.2. We’ll also obtain a few
other results that will be needed in proofs in Section 4.2.

© 2008 by Taylor & Francis Group, LLC



SECTION 3.2 DIVISION POLYNOMIALS 81

In order to study the torsion subgroups, we need to describe the map on
an elliptic curve given by multiplication by an integer. As in Section 2.9, this
is an endomorphism of the elliptic curve and can be described by rational
functions. We shall give formulas for these functions.

We start with variables A, B. Define the division polynomials 1, €

Z[z,y, A, B] by
o =0
P =1
e =2y

V3 = 3zt + 6A2% + 12Bx — A?
Yy = 4y(z® + 5Ax* 4 20B2® — 5A4%2% — 4ABx — 8B? — A?)
Vomt1 = Ymy2Uhy, — Ym—1Up, 4 for m > 2
Vo = (29) " (Wm) (Y22, 1 — Ym_otbz, ;) for m > 3.

LEMMA 3.3
¥, is a polynom ial i Z[z,y?, A, B] when n is odd, and v,, is a polynom ial
in 2yZ[z,y?, A, B] when n is even.

PROOF The lemma is true for n < 4. Assume, by induction, that it holds
for all n < 2m. We may assume that 2m > 4, so m > 2. Then 2m > m + 2,
so all polynomials appearing in the definition of o, satisfy the induction
assumptions. If m is even, then ¥,,, ¥ 12,¥m_2 are in 2yZ[x,y?, A, B], from
which it follows that g, is in 2yZ[z,y?, A, B]. If m is odd, then ), 1 and
VYmi1 are in 2yZx,y?, A, B], so again we find that s, is in 2yZ[z, y?, A, B].
Therefore, the lemma holds for n = 2m. Similarly, it holds for n = 2m + 1.

Define polynomials

Pm = -Tw?n - wm—l—lwm—l
Wm = (4y)_1(¢m+2¢72n—1 - ¢m—2¢72n+1)'

LEMMA 3.4
¢n € Z[x,y*, A, B] oralln. Ifn is odd, then w, € yZ[zr,y* A, B]. Ifn is
even, then w,, € Z[x,y?, A, B].

PROOF If n is odd, then 1,1 and 1,1 are in yZ[x,y?, A, B], so their
product is in Z[x,y?, A, B]. Therefore, ¢,, € Z[x,y*, A, B]. If n is even, the
proof is similar.

The facts that y~lw, € Zlz,y? A, B] for odd n and w,, € %Z[x,yQ,A, B]
for even n follow from Lemma 3.3, and these are all that we need for future
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applications. However, to get rid of the extra 2 in the denominator, we proceed
as follows. Induction (treating separately the various possibilities for n mod
4) shows that

¥y = (22 + A)(”Q_l)/4 (mod 2) when n is odd

and
(29) n = (g) (z* + A)(n2_4)/4 (mod 2)  when n is even.
A straightforward calculation now yields the lemma. i

We now consider an elliptic curve
E: y?*=2°+Ar+ B, 4A3+27B%#0.

We don’t specify what ring or field the coefficients A, B are in, so we continue
to treat them as variables. We regard the polynomials in Z[z,y?, A, B] as
polynomials in Z[z, A, B] by replacing y? with 23 + Ax + B. Therefore, we
write ¢, (z) and 12 (x). Note that v, is not necessarily a polynomial in z
alone, while 12 is always a polynomial in z.

LEMMA 3.5

On(T) " 4 wer degree term s
V2 (z) = n22" ! + bwer degree term s

n

PROOF In fact, we claim that

b = y(nz™=D/2 4 ...} ifnis even
" nz™-D/2 4 ... if nis odd.

This is proved by induction. For example, if n = 2m + 1 with m even, then
the leading term of 1213, is

(m+2)2—4 4 3m2-12

(m +2)m3yte 2 2

Changing y* to (23 + Az + B)? yields

2m+1)2-1
2

(m + 2)m3x
Similarly, the leading term of ¢, _193, ¢ is

(2m+1)2 -1
2

(m—1)(m+ 1)z
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Subtracting and using the recursion relation shows that the leading term of
Yam+1 is as claimed in the lemma. The other cases are treated similarly. |

We can now state the main theorem.

THEOREM 3.6
Let P = (z,y) ke a point on the elliptic curve y? = 2® + Az + B (over som e
field of characteristic not 2), and ktn ke a positive Integer. Then

= (G ).

The proof will be given in Section 9.5.

COROLLARY 3.7
Let FE e an elliptic curve. The endom orphism of £ given by m uldplication
by n has degree n?.

PROOF From Lemma 3.5, we have that the maximum of the degrees of

the numerator and denominator of ¢,,(x)/v2(z) is n?. Therefore, the degree

of the endomorphism is n? if this rational function is reduced, that is, if ¢, (z)

and 92 (x) have no common roots. We’ll show that this is the case. Suppose

not. Let n be the smallest index for which they have a common root.
Suppose n = 2m is even. A quick calculation shows that

¢o(x) = 2t — 2A2% — 8Bz + A%

Computing the z-coordinate of 2m(x,y) in two steps by multiplying by m
and then by 2, and using the fact that

V3 = 4y® = 4(2® + Az + B),

we obtain

¢2m _ ¢2(¢m/¢72n)
Vim  V3(0m /7))

_ O — 2A0% ¥, — 8By, + A%,
(W)@, + Admiy, + BYS,)

V’

where U and V' are the numerator and denominator of the preceding expres-
sion. To show U and V have no common roots, we need the following.
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LEMMA 3.8
Let A = 4A3% + 2782 and kt

Ax® — 4A®Bx®z + 4A(3A% 4+ 22B%)x2* + 12B(A® + 8B?)2°
= A?Ba® + A(5A3 + 32B?)2?2 + 2B(13A43 4 96 B?) 2>
— 34%(A% +8B?)2°,

T hen
Ffl - Ggl = 4AZ7 and ng + Ggg = 4A1}'7

PROOF This is verified by a straightforward calculation. Where do these
identities come from? The polynomials F'(z,1) and G(z,1) have no common
roots, so the extended Euclidean algorithm, applied to polynomials, finds
polynomials fi(z), g1(x) such that F(x,1)f1(z)+G(x,1)g1(xz) = 1. Changing
r to x/z, multiplying by z” (to make everything homogeneous), then multi-
plying by 4A to clear denominators yields the first identity. The second is
obtained by reversing the roles of x and z.

The lemma implies that

U f1(dm 02) =V - g1 (b, ¥02,) = 414A
U fo(pms %) + V- g2(dmsb2,) = 4n, A

If U,V have a common root, then so do ¢,,, and 2 . Since n = 2m is the first
index for which there is a common root, this is impossible.

It remains to show that U = ¢a,, and V = 43, . Since U/V = ¢ap /13,
and since U,V have no common root, it follows that ¢s,, is a multiple of U
and 13, is a multiple of V. A quick calculation using Lemma 3.5 shows that

U = 2*™ + lower degree terms.

Lemma 3.5 and the fact that ¢s,, is a multiple of U imply that ¢o,, = U.
Therefore, V = 43, . It follows that ¢, and 93, have no common roots.

Now suppose that the smallest index n such that there is a common root is
odd: n = 2m + 1. Let r be a common root of ¢,, and 2. Since

an — xd}% - ¢n—1¢n+17

and since ¥p,4+19¥,—1 is a polynomial in x, we have (¢¥p41¢¥n—1)(r) = 0.
But 2., are polynomials in z and their product vanishes at r. Therefore
2 5(r) =0, where ¢ is either 1 or —1.

© 2008 by Taylor & Francis Group, LLC



SECTION 3.2 DIVISION POLYNOMIALS 85

Since n is odd, both v,, and 1,125 are polynomials in x. Moreover,

(wn¢n+25)2 = ¢721¢721+25

vanishes at r. Therefore 1,1, 125 vanishes at r. Since

2
d)n—l—(; - an_HS - ¢nwn+257

we find that ¢,45(r) = 0. Therefore, ¢p45 and 2 ; have a common root.
Note that n + 9 is even.

When considering the case that n is even, we showed that if ¢, and 93,
have a common root, then ¢,, and 2, have a common root. In the present
case, we apply this to 2m = n + §. Since n is assumed to be the smallest
index for which there is a common root, we have

n+6>n
5 =

This implies that n = 1. But clearly ¢; = x and %7 = 1 have no common
roots, so we have a contradiction.

This proves that ¢,, and 12 have no common roots in all cases. Therefore,
as pointed out at the beginning of the proof, the multiplication by n map has
degree n?. This completes the proof of Corollary 3.7.

Recall from Section 2.9 that if a(z,y) = (R(x), yS(z)) is an endomorphism
of an elliptic curve F, then « is separable if R'(x) is not identically 0. Assume
n is not a multiple of the characteristic p of the field. From Theorem 3.6 we
see that the multiplication by n map has

2
n2xn2—l_|_,,_'

R(x) =

The numerator of the derivative is n2z2" =2+ .- # 0, s0 R'(z) # 0. Therefore,
multiplication by n is separable. From Corollary 3.7 and Proposition 2.21,
E[n], the kernel of multiplication by n, has order n?. The structure theorem
for finite abelian groups (see Appendix B) says that E[n| is isomorphic to

an@zng@@znka

for some integers nq,na, . . ., ng with n;|n;,q for all i. Let £ be a prime dividing
ni. Then ¢|n; for all i. This means that E[{] C E[n] has order £*. Since we
have just proved that F[f] has order £?, we must have k = 2. Multiplication by
n annihilates E[n| ~ Z,, ® Zy,, so we must have na|n. Since n? = #E[n] =
ning, it follows that n; = ny = n. Therefore,

En|~7Z, ®Z,

when the characteristic p of the field does not divide n.
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It remains to consider the case where p|n. We first determine the p-power
torsion on F. By Proposition 2.28, multiplication by p is not separable. By
Proposition 2.21, the kernel E[p] of multiplication by p has order strictly less
than the degree of this endomorphism, which is p? by Corollary 3.7. Since
every element of E[p| has order 1 or p, the order of E[p] is a power of p, hence
must be 1 or p. If E[p] is trivial, then E[p*] must be trivial for all k. Now
suppose E[p] has order p. We claim that E[p*] ~ Z« for all k. It is easy to
see that E[p*] is cyclic. The hard part is to show that the order is p¥, rather
than something smaller (for example, why can’t we have E[p*] = E[p] ~ Z,
for all k7). Suppose there exists an element P of order p/. By Theorem 2.22,
multiplication by p is surjective, so there exists a point ) with pQ) = P. Since

PQ=p" 'P#o0o0 but pTQ=p'P = o0,

@ has order p?T!. By induction, there are points of order p* for all k. There-
fore, E[p*] is cyclic of order p¥.
We can now put everything together. Write n = p"n’ with r > 0 and p{ n’.
Then
E[n] ~ E[n'] & E[p"].

We have En'| ~ Z, ® Z,,, since p 1 n/. We have just showed that E[p"] ~
0 or Z,. Recall that
ZTL’ b Zpr ~ Zn/pr ~ Zn

(see Appendix A). Therefore, we obtain
En|~2, ®Z, or Z,®dZ,.

This completes the proof of Theorem 3.2. i

3.3 The Weil Pairing

The Weil pairing on the n-torsion on an elliptic curve is a major tool in the
study of elliptic curves. For example, it will be used in Chapter 4 to prove
Hasse’s theorem on the number of points on an elliptic curve over a finite
field. It will be used in Chapter 5 to attack the discrete logarithm problem
for elliptic curves. In Chapter 6, it will be used in a cryptographic setting.

Let E be an elliptic curve over a field K and let n be an integer not divisible
by the characteristic of K. Then E[n| ~ Z,, ® Z,,. Let

pn ={z € K|2™ =1}

be the group of nth roots of unity in K. Since the characteristic of K does
not divide n, the equation 2™ = 1 has no multiple roots, hence has n roots in
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K. Therefore, i, is a cyclic group of order n. Any generator ¢ of u,, is called
a primitive nth root of unity. This is equivalent to saying that (¥ = 1 if
and only if n divides k.

THEOREM 3.9
Let I ke an elliptic curve defined over a field K and ktn ke a positive Integer.
A ssum e that the characteristic of K doesnotdivide n . Then there is a pairing

en : E[n] x E[n] — pn,
called the Weil pairing, that satidfies the follow Ing properties:
1. e, isbillnear in each vardiablk. This m eans that
en(S1+ 52, T) = en(S1,T)en(S2,T)

and
en(Sa Tl + T2) = en(Sa Tl)en(Sa TQ)

foralls, Sy, 52, 1,11, Ty € E[n] .
2. e, is nondegenerate In each variabk. This m eans that if e, (S,7) = 1

for allT € E[n| then S = oo and alo that if e, (5,7) = 1 for all
S € E[n| thenT = 0.

3.e,(T,T)=1 forallT € Eln].
4.e,(T,8)=e,(S,T)"! orallS,T € E[n].

5. en(05,0T) = o(e,(S,T)) for all autom orphism s ¢ of K such that o is
the identity map on the coe cientsof ¥ (if £ is In W elerstrass form ,
this m eans that 0(A) = A and 0(B) = B).

6. en(a(S),a(T)) = en(S,T)%e(®) for all separable endom orphism s o of
E. If the e cients of I lie In a finite field F,, then the statem ent
also holds when o is the Frokenius endom orphism ¢,. (Actually, the
statem ent holds for all endom orphism s o, separabk or not. Ses [38].)

The proof of the theorem will be given in Chapter 11. In the present section,
we’ll derive some consequences.

COROLLARY 3.10
Let {T1,T>} ke a kasis of E[n|. Then e,(T1,T3) is a prin itive nth root of
unity.

PROOF  Suppose e,(Ti,Tz) = ¢ with ¢(¢ = 1. Then e,(T1,dTs) = 1.
Also, e,(Ty,dTy) = e,(T»,T»)? = 1 (by (1) and (3)). Let S € E[n]. Then

© 2008 by Taylor & Francis Group, LLC



88 CHAPTER 3 TORSION POINTS

S = aTy + bT5 for some integers a,b. Therefore,
€n(S, dTZ) = en(Tl,dTQ)“en(Tg, de)b =1.

Since this holds for all S, (2) implies that dT5 = oo. Since dT» = oo if and
only if n|d, it follows that ¢ is a primitive nth root of unity.

COROLLARY 3.11
IfE[n| C E(K), then u, C K.

REMARK 3.12  Recall that points in E[n] are allowed to have coordinates
in K. The hypothesis of the corollary is that these points all have coordinates
in K.

PROOF Let o be any automorphism of K such that o is the identity on
K. Let Ty, T be a basis of E[n]. Since T, T, are assumed to have coordinates
in K, we have 0Ty =T} and oT5 = Ts. By (5),

C = €n(T1,T2) = en(aTl,chg) = U(€n<T1,T2)) = O'(C)

The fundamental theorem of Galois theory says that if an element z € K is
fixed by all such automorphisms o, then x € K. Therefore, ( € K. Since (
is a primitive nth root of unity by Corollary 3.10, it follows that u, C K.
(Technical point: The fundamental theorem of Galois theory only implies
that ¢ lies in a purely inseparable extension of K. But an nth root of unity
generates a separable extension of K when the characteristic does not divide
n, so we conclude that ¢ € K.)

COROLLARY 3.13
Let F e an elliptic curve defined over Q. Then E[n] € E(Q) forn > 3.

PROOF If E[n| C E(Q), then p, C Q, which is not the case when n > 3.

REMARK 3.14 When n = 2, it is possible to have E[2] C E(Q). For
example, if E is given by y? = x(x — 1)(x + 1), then

E[2] = {007 (07 0)7 (1,0), (_17 0)}

If n=3,4,5,6,7,8,9,10,12, there are elliptic curves E defined over Q that
have points of order n with rational coordinates. However, the corollary says
that it is not possible for all points of order n to have rational coordinates for

these n. The torsion subgroups of elliptic curves over Q will be discussed in
Chapter 8. i
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We now use the Weil pairing to deduce two propositions that will be used in
the proof of Hasse’s theorem in Chapter 4. Recall that if o is an endomorphism

CCL Z with entries in Z,,, describing the
action of a on a basis {T1,T5} of E[n].

of E, then we obtain a matrix «,, =

PROPOSITION 3.15

Let o ke an endom orphism of an elliptic curve F defined over a fied K .
Let n ke a positive integer not divisiblke by the characteristic of K. Then
det(a,,) = deg(a) (mod n).

PROOF By Corollary 3.10, ¢ = e,,(T1,1%) is a primitive nth root of unity.
By part (6) of Theorem 3.9, we have

Cdeg(a) — en(a(Tl), OZ(TQ)) = €n(CLT1 + CTQ, bT]_ + dTQ)

= en(T1, T1)en(Th, To) e (To, Th) e (Ty, To)
— Cad—bc,

by the properties of the Weil pairing. Since ( is a primitive nth root of unity,
deg(a) = ad — be (mod n).

As we’ll see in the proof of the next result, Proposition 3.15 allows us to
reduce questions about the degree to calculations with matrices. Both Propo-
sition 3.15 and Proposition 3.16 hold for all endomorphisms, since part (6)
of Theorem 3.9 holds in general. However, we prove part (6) only for sepa-
rable endomorphisms and for the Frobenius map, which is sufficient for our
purposes. We’'ll state Proposition 3.16 in general, and the proof is sufficient
for separable endomorphisms and for all endomorphisms of the form r + s¢,
with arbitrary integers r, s.

Let a and 3 be endomorphisms of E and let a, b be integers. The endomor-
phism aa + bf3 is defined by

(ac + bB)(P) = aa(P) + bB(P).

Here aa(P) means multiplication on E of a(P) by the integer a. The result
is then added on E to bF(P). This process can all be described by rational
functions, since this is true for each of the individual steps. Therefore ac+ b3
is an endomorphism.

PROPOSITION 3.16

deg(ac + bB) = a* deg o + b* deg 3 + ab(deg(a + B) — deg o — deg 3).

© 2008 by Taylor & Francis Group, LLC



90 CHAPTER 3 TORSION POINTS

PROOF Let n be any integer not divisible by the characteristic of K.
Represent o and ( by matrices «, and (3, (with respect to some basis of
E[n]). Then ac, +bj,, gives the action of ac+bf on E[n|. A straightforward
calculation yields

det(acy, + bB,) = a® det a,, + b* det 8, 4+ ab(det(ay, + 5,) — det a,, — det 3,,)

for any matrices a,, and 3, (see Exercise 3.4). Therefore

deg(aa + bf) =

a® deg o + b* deg 3 + ab(deg(a + ) — degar — deg 3)  (mod n).
Since this holds for infinitely many n, it must be an equality. |
=

3.4 The Tate-Lichtenbaum Pairing

Starting from the Weil pairing, it is possible to define a pairing that can be
used in cases where the full n-torsion is not available, so the Weil pairing does
not apply directly. The approach used in this section was inspired by work of
Schaefer [96].

THEOREM 3.17

Let F be an elliptic curve over F,. Let n be an integer such thatn|¢ — 1.
D enote by E(F,)[n] the elem ents of E(F,) of order dividing n, and ket u,, =
{reF, 2" =1}. Let P € E(F,)[n] and Q € E(F,) and choose R € E(F,)
satisfying nR = ). Denote by e,, the nth W eilpairing and by ¢ = ¢, the ¢th
pow er Frobeniis endom orphign . D efine

Tn(Pa Q) = en(P7R - ¢(R))

Then
™o : E(Fg)[n] x E(Fq)/nE(Fq) — pn

is a well-defined nondegenerate bilinear pairing.

The pairing of the theorem is called the modified Tate-Lichtenbaum
pairing. The original Tate-Lichtenbaum pairing is obtained by taking
the nth root of 7,,, thus obtaining a pairing

(s )n 2 E(Fg)[n] x E(Fg)/nE(Fy) — Fi/(F)".

The pairing 7,, is better suited for computations since it gives a definite answer,
rather than a coset in F mod nth powers. These pairings can be computed
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quickly (using at most a constant times logq point additions on F). See
Section 11.4.

Technically, we should write 7, (P, Q) as 7, (P, Q+nE(F,)), since an element
of E(F,)/nE(F,) has the form @ + nE(F,). However, we’ll simply write
7o (P, Q) and similarly for (P,@),. The fact that 7,, is nondegenerate means

that if 7,,(P,Q) = 1 for all @ then P = oo, and if 7,(P, Q) = 1 for all P then
Q € nE(F,). Bilinearity means that

Tn(Pr + P, Q) = 7 (P1, Q)70 (P2, Q)

and

Tn(Ple + QQ) = Tn(Pa Ql)Tn(Pv QQ)

PROOF  We now prove the theorem. First, we need to show that 7, (P, Q)
is defined and is independent of the choice of R. Since nR = Q € E(F,), we
have

0 =Q—-¢(Q) =n(R—-9¢R),

so R — ¢R € FEIn] (to lower the number of parentheses, we often write ¢pR
instead of ¢(R)). Since P € FEln], too, the Weil pairing e, (P, R — ¢R) is
defined. Suppose that nR’ = Q gives another choice of R. Let T = R’ — R.
Then nT = Q — Q = oo, so T € E|[n|. Therefore,

en(P,R' — ¢R') = e,(P,R— ¢R+T — ¢T)
=en(P,R— ¢R)e, (P, T)/en (P, ¢T).

But P = ¢P, since P € E(F,), so
en(P,¢T) = en(pP, ¢T) = ¢ (en(P,T)) = en(P, T),
since e, (P,T') € p, C F,. Therefore,
en(P,R — ¢R') = e,(P,R — ¢R),

so T, does not depend on the choice of R.

Since @ is actually a representative of a coset in E(F,)/nE(F,), we need
to show that the value of 7,, depends only on the coset, not on the particular
choice of representative. Therefore, suppose Q' — Q = nU € nE(F,). Let
nR=@Q and let R = R+ U. Then nR' = Q. We have

en(P, R — ¢R') = en(P,R— ¢R+U — ¢U) = en(P, R — ¢R),

since U = ¢U for U € E(F,). Therefore, the value does not depend on the
choice of coset representative. This completes the proof that 7,, is well defined.

The fact that 7,(P, Q) is bilinear in P follows immediately from the cor-
responding fact for e,. For bilinearity in @, suppose that nR; = @7 and
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TLRQ = QQ. Then n(R1 + RQ) = Ql + QQ, SO

Tn(P7 Ql + QQ)

en(P, Ry + Ry — ¢R1 — ¢Ry)
en(P7 Rl - ¢R1)GH(P7 R2 - ¢R2)
Tn(P7Q1)7—n(P7 QQ)

It remains to prove the nondegeneracy. This we postpone to Section 11.7.

The Tate-Lichtenbaum pairing can be used in some situations where the
Weil pairing does not apply. The Weil pairing needs E[n] C E(F,), which
implies that u, C F7, by Corollary 3.11. The Tate-Lichtenbaum pairing
requires that u, C FJ, but only needs a point of order n, rather than all
of E[n], to be in E(F,). In fact, it doesn’t even need a point of order n. If
E(F,)[n] is trivial, for example, then we have a pairing between two trivial
groups.

Exercises
3.1 Let E be the elliptic curve y?> = 23 + 1 mod 5.

(a) Compute the division polynomial 15(x).

(b) Show that ged(z® — z,3(z)) = .

(c) Use the result of part (b) to show that the 3-torsion points in E(F5)
are {00, (0,1),(0,—1)}.

3.2 Let FE be an elliptic curve in characteristic 2. Show that F[3] ~ Z3® Zs.
(H Int: Use the formulas at the end of Section 2.8.)

3.3 Let E be an elliptic curve over a field of characteristic not 2. Let E[2] =
{00, Pi, P, P3}. Show that ex(P;, Pj) = —1 whenever ¢ # j.

w T

3.4 Let M and N be 2 x 2 matrices with N = (y s

). Define N =

(_Zy —w:c) (this is the adjoint matrix).

(a) Show that Trace(MN) = det(M + N) — det(M) — det(N).
(b) Use (a) to show that

det(aM + bN) — a® det M — b* det N
= ab(det(M + N) —det M — det N)
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for all scalars a,b. This is the relation used in the proof of Propo-
sition 3.16.

3.5 Show that part (6) of Theorem 3.9 holds when « is the endomorphism
given by multiplication by an integer m.

3.6 Let E be an elliptic curve over a field K and let P be a point of order
n (where n is not divisible by the characteristic of the field K). Let
() € E[n]. Show that there exists an integer k such that @ = kP if and
only if e, (P, Q) = 1.

3.7 Write the equation of the elliptic curve E as
F(x,y,2) =y?z — 2 — Azz* — B2* = 0.
Show that a point P on F is in E[3] if and only if

Fxmey F:vz
det [ Fyo Fyy Fyo | =0
sz Fzy Fzz

at the point P, where F; denotes the 2nd partial derivative with respect
to a,b. The determinant is called the Hessian. For a curve in P? defined
by an equation F' = 0, a point where the Hessian is zero is called a flex
of the curve.

3.8 The division polynomials 1),, were defined for n > 0. Show that if we
let ¢_,, = —1,, then the recurrence relations preceding Lemma 3.3,
which are stated only for m > 2, hold for all integers m. (Note that this
requires verifying the relations for m < —2 and for m = —1,0, 1.)
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Chapter 4

Elliptic Curves over Finite

Fields

Let F be a finite field and let E be an elliptic curve defined over F. Since
there are only finitely many pairs (x,y) with z,y € F, the group E(F) is
finite. Various properties of this group, for example, its order, turn out to
be important in many contexts. In this chapter, we present the basic theory
of elliptic curves over finite fields. Not only are the results interesting in
their own right, but also they are the starting points for the cryptographic
applications discussed in Chapter 6.

4.1 Examples

First, let’s consider some examples.

Example 4.1

Let E be the curve y? = 23 +2+1 over F5. To count points on E, we make a
list of the possible values of z, then of 23 +x + 1 (mod 5), then of the square
roots y of 23 + 2 + 1 (mod 5). This yields the points on E.

P +r+1 oy Points

T

0 1 +1 (0,1),(0,4)
1 3 - -

2 1 +1(2,1),(2,4)
3 1 +1 (3,1),(3,4)
4 4 +2 (4,2),(4,3)
0 0. @) 0

Therefore, E(F5) has order 9.

95
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Let’s compute (3,1) + (2,4) on E. The slope of the line through the two
points is
4—1
The line is therefore y = 2(z—3)+1 = 2x. Substituting this into y* = 23+2+1
and rearranging yields
0=2a®—42? +2+1.

The sum of the roots is 4, and we know the roots 3 and 2. Therefore the
remaining root is x = 4. Since y = 2x, we have y = 3. Reflecting across the
xr-axis yields the sum:

(3,1) + (2,4) = (4,2).

(Of course, we could have used the formulas of Section 2.2 directly.) A little
calculation shows that F(F'5) is cyclic, generated by (0, 1) (Exercise 4.1). [

Example 4.2
Let E be the elliptic curve y? = 23 + 2 over F7. Then

E(F7) = {00, (0,3), (0,4), (3,1), (3,6), (5,1), (5,6), (6,1), (6,6)}.

An easy calculation shows that all of these points P satisfy 3P = oo, so the
group is isomorphic to Zs @ Zs. I

Example 4.3
Let’s consider the elliptic curve E given by y? + xy = 23 + 1 defined over Fs.
We can find the points as before and obtain

E(FZ) = {OO, (07 1)7 (170)? (17 1)}

This is a cyclic group of order 4. The points (1,0), (1, 1) have order 4 and the
point (0, 1) has order 2.

Now let’s look at F(F4). Recall that Fy is the finite field with 4 elements.
We can write it as Fy = {0,1,w,w?}, with the relation w? + w +1 = 0 (which
implies, after multiplying by w + 1, that w3 = 1). Let’s list the elements of

E(Fy).
:C:O:>y2:1:>y:1
r=1=y’+y=0=y=0,1
r=w=1y4wy=0=y=0w
r=w’= 1y’ +u’y=0=y=0,w
T =00= Yy = 00.

Therefore

E(F4) = {00, (0,1), (1,0), (1,1), (w,0), (w,w), (w*,0), (w?,w?)}.
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Since we are in characteristic 2, there is at most one point of order 2 (see
Proposition 3.1). In fact, (0,1) has order 2. Therefore, E(F4) is cyclic of
order 8. Any one of the four points containing w or w? is a generator. This
may be verified by direct calculation, or by observing that they do not lie in
the order 4 subgroup E(F3). Let ¢o(x,y) = (22,9%) be the Frobenius map.
It is easy to see that ¢o permutes the elements of E(F,), and

E(F3) ={(z,y) € E(F4) | d2(z,y) = (z,y) } .

In general, for any elliptic curve E defined over F, and any extension F of
F,, the Frobenius map ¢, permutes the elements of E(F) and is the identity

on the subgroup E(F,). See Lemma 4.5. I

Two main restrictions on the groups E(F,) are given in the next two the-
orems.

THEOREM 4.1
Let /' ke an elliptic curve over the finite field I, . Then

EF¥,) ~Z, or Z, ®Z,,

for som e Integer n > 1, or for som e mtegers ny,ne > 1 with ny dividing ns .

PROOF A basic result in group theory (see Appendix B) says that a finite
abelian group is isomorphic to a direct sum of cyclic groups

an@znz@"'@znr,

with n;|n;41 for ¢ > 1. Since, for each ¢, the group Z,, has n; elements of
order dividing n, we find that E(F,) has n] elements of order dividing n,. By
Theorem 3.2, there are at most n7 such points (even if we allow coordinates
in the algebraic closure of F;). Therefore » < 2. This is the desired result
(the group is trivial if » = 0; this case is covered by n = 1 in the theorem).

THEOREM 4.2 (Hasse)
Let £ be an elliptic curve over the finite field F,,. Then the order of E(F )
satidfies
lg+1—#E(F,)| < 2\/q.
The proof will be given in Section 4.2.
A natural question is what groups can actually occur as groups E(F,). The

answer is given in the following two results, which are proved in [130] and [93],
respectively.
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THEOREM 4.3

Letq=p" beapowerofaprimnep and Et N = ¢+ 1—a. There is an elliptic
curve I defined over F, such that #F(F,;) = N ifand only if|a| < 2,/q and
a satidfies one of the follow ing:

1. ged(a,p) =1

2.n iseven and a = £2,/q

3.n iseven,p# 1 (mod 3), and a = £,/q
4.n isodd, p=2or3,anda = +pntl)/2
5.niseven,p# 1 (mod 4),anda =0

6.n isocddand a =0.

THEOREM 4.4

Let N ke an integer that occurs as the order of an elliptic curve over a finite
fied F;, as In Theorem 43. W rite N = p°ning with p { niny and ng|ne
(possibly n; = 1). There is an elliptic curve £ over F, such that

EF,) ~Zy DL, ©Z,,
if and only if
1.n1l¢g—1 in cases 1), 3), 4), (5), (6) of Theorem 4.3
2.1n1 =n9 N case (2) of Theorem 4 3.

These are the only groups that occur as groups E(F,) .

4.2 The Frobenius Endomorphism
Let F, be a finite field with algebraic closure F, and let

oq : Fy —>Fq,

xz — x

be the Frobenius map for F, (see Appendix C for a review of finite fields).
Let E be an elliptic curve defined over F;. Then ¢, acts on the coordinates
of points in E(F,):

bq(z,y) = (x9,y7), ¢q(00) = 0.
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LEMMA 4.5 B
Let F ke defined over F, and ¥t (z,y) € E(F,).

1. ¢q(w,y) € E(Fy)
2. (z,y) € E(F,) ifand only if ¢,(x,y) = (z,y).

PROOF  One fact we need is that (a + b)? = a9 + b? when ¢ is a power of
the characteristic of the field. We also need that a? = a for all a € F,. See
Appendix C.

Since the proof is the same for the Weierstrass and the generalized Weier-
strass equations, we work with the general form. We have

y2 +ai1xy + azy = 3 + asx? 4+ agx + ag,
with a; € F,. Raise the equation to the gth power to obtain
(y)? + ar(z%y?) + as(y?) = (29)° + az(2)* + aq(2) + ag.

This means that (z9,y?) lies on E, which proves (1).
For (2), again recall that = € F if and only if ¢4(x) = z (see Appendix C),
and similarly for y. Therefore

(x,y) € E(Fy) & x,y € F,
& @g(x) =z and ¢q(y) =y
~ ¢Q(x7y) = (Q?,y)

LEMMA 4.6
Let F/ ke an elliptic curve defined over F;. Then ¢, is an endom orphism of
E of degree ¢, and ¢, is not separable.

This is the same as Lemma 2.20.

Note that the kernel of the endomorphism ¢, is trivial. This is related to
the fact that ¢, is not separable. See Proposition 2.21.

The following result is the key to counting points on elliptic curves over
finite fields. Since ¢, is an endomorphism of E, so are qbg = @4 © ¢4 and also
Py = ¢q 0 Qg0 0@y for every n > 1. Since multiplication by —1 is also an
endomorphism, the sum ¢y — 1 is an endomorphism of F.

PROPOSITION 4.7
Let I/ ke defined over Fy and ktn > 1.

1. Ker(¢y —1) = E(Fyn).
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2. ¢y — 1 is a separable endom orphism , 50 #FE(F ) = deg(dy —1).

PROOF  Since ¢y is the Frobenius map for the field Fy», part (1) is just
a restatement of Lemma 4.5. The fact that ¢y — 1 is separable was proved in

Proposition 2.29. Therefore (2) follows from Proposition 2.21. i

Proof of Hasse'’s theorem :
We can now prove Hasse’s theorem (Theorem 4.2). Let

a=q+1—#E(F,) =q+1—deg(p, —1). (4.1)
We want to show that |a| < 2,/q. We need the following.

LEMMA 4.8
Letr, s ke ntegers with ged(s,¢) = 1. Then deg(r¢, — s) = r?q+s* —rsa.

PROOF Proposition 3.16 implies that

deg(rgg —s) = r* deg(¢g) +5° deg(—1) +rs(deg(¢, — 1) — deg(¢,) — deg(—1)).
Since deg(¢4) = ¢ and deg(—1) = 1, the result follows from (4.1). i
REMARK 4.9 The assumption that ged(s,q) = 1 is not needed. We

include it since we have proved Proposition 3.16 not in general, but only
when the endomorphisms are separable or ¢,.

We can now finish the proof of Hasse’s theorem. Since deg(r¢, —s) > 0,

the lemma implies that
2
() () iz
S S

for all r,s with ged(s,q) = 1. The set of rational numbers r/s such that
ged(s,q) = 1 is dense in R. (Proof: Take s to be a power of 2 or a power of 3,
one of which must be relatively prime with g. The rationals of the form r /2™
and those of the form r /3™ are easily seen to be dense in R.) Therefore,

g’ —axr+1>0

for all real numbers x. Therefore the discriminant of the polynomial is negative
or 0, which means that a® — 4¢ < 0, hence |a| < 2,/g. This completes the

proof of Hasse’s theorem. |

There are several major ingredients of the above proof. One is that we can
identify E(F,) as the kernel of ¢, — 1. Another is that ¢, — 1 is separable,
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so the order of the kernel is the degree of ¢, — 1. A third major ingredient
is the Weil pairing, especially part (6) of Theorem 3.9, and its consequence,
Proposition 3.16.

Proposition 4.7 has another very useful consequence.

THEOREM 4.10
Let I ke an elliptic curve defined over F; . Leta be as in Equation 4.1. Then

¢3—a¢q+q:0
as endom orphism s of F/, and a is the unigue integer k such that
o7 — kg +q=0.

In other words, if (x,y) € E(Fq) , then
2 2
(wq Y ) —a(z%,y?) + q(r,y) = oo,

and a is the unigque mteger such that this rhtion holds for all(z,y) € E(F,) .
M oreover, a is the unigque nteger satisfying

a = Trace((¢q)m) mod m

for allm with ged(m,q) = 1.

PROOF If qbg — a¢y + q is not the zero endomorphism, then its kernel
is finite (Proposition 2.21). We’ll show that the kernel is infinite, hence the
endomorphism is 0.

Let m > 1 be an integer with ged(m,q) = 1. Recall that ¢, induces a
matrix (¢4)m, that describes the action of ¢, on E[m]. Let

(dg)m = <,jf,)

Since ¢, —1 is separable by Proposition 2.29, Propositions 2.21 and 3.15 imply
that

#Ker(¢pg — 1) = deg(¢q — 1) = det((¢g)m — 1)
=sv—tu—(s+v)+1 (modm).

By Proposition 3.15, sv—tu = det((¢q)m) = ¢ (mod m). By (4.1), #Ker(¢,—
1) = g+ 1 — a. Therefore,

Trace((¢q)m) =s+v=a (mod m).
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By the Cayley-Hamilton theorem of linear algebra, or by a straightforward
calculation (substituting the matrix into the polynomial), we have

(¢Q)$n —a(¢g)m + ¢l =0 (mod m),

where I is the 2x2 identity matrix. (Note that X?—aX +q is the characteristic
polynomial of (¢g)nm.) This means that the endomorphism gbz — apq + q is
identically zero on E[m]. Since there are infinitely many choices for m, the
kernel of qﬁg — a¢q + q is infinite, so the endomorphism is 0.

Suppose a; # a satisfies qbg —a1¢94 +q = 0. Then

(a —a1)pg = (¢ — ar1¢q + @) — (¢ — agq + q) = 0.

By Theorem 2.22, ¢, : E(F;) — E(F,) is surjective. Therefore, (a — a1)

annihilates E(F,). In particular, (¢ — a;) annihilates E[m]| for every m > 1.
Since there are points in E[m] of order m when ged(m,q) = 1, we find that

a—a; =0 (mod m) for such m. Therefore a — a; = 0, so a is unique. i

We single out the following result, which was proved during the proof of
Theorem 4.10.

PROPOSITION 4.11
Let E' ke an elliptic curve over F; and ket (¢4).,, denote the m atrix giving the
action of the Frobenius ¢, on E[m|. Leta=¢q¢+ 1 — #E(F,). Then

Trace((¢q)m) =a (mod m), det((pg)m) =¢ (mod m).

The polynomial X2 —aX +q is often called the characteristic polynomial
of Frobenius.

4.3 Determining the Group Order

Hasse’s theorem gives bounds for the group of points on an elliptic curve
over a finite field. In this section and in Section 4.5, we’ll discuss some methods
for actually determining the order of the group.

4.3.1 Subfield Curves

Sometimes we have an elliptic curve F defined over a small finite field F,
and we want to know the order of E(F;») for some n. We can determine the
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order of E(F») when n = 1 by listing the points or by some other elementary
procedure. The amazing fact is that this allows us to determine the order for
all n.

THEOREM 4.12
Let#E(F,)=q¢+1—a.Wrdte X? —aX +q= (X —a)(X — ). Then

#EFqn) =q"+1—(a" +5")

foralln > 1.

PROOF First, we need the fact that o™ 4+ 3" is an integer. This could
be proved by remarking that it is an algebraic integer and is also a rational
number. However, it can also be proved by more elementary means.

LEMMA 4.13
Lets, = a"™ + (". Then so = 2, s1 = a, and Sp4+1 = aS, — qS,—1 orall
n>1.

PROOF  Multiply the relation a® — aac+ ¢ = 0 by o”~! to obtain a™*! =
aa™ — qa™ . There is a similar relation for 5. Add the two relations to
obtain the lemma.

It follows immediately from the lemma that o™ + 8" is an integer for all
n > 0.
Let

fFX) = (X" —a™)(X" = f") = X" — (" + ") X" +¢".

Then X? —aX + ¢ = (X — a)(X — ) divides f(X). It follows immediately
from the standard algorithm for dividing polynomials that the quotient is
a polynomial Q(X) with integer coefficients (the main points are that the
leading coefficient of X? — aX + ¢ is 1 and that this polynomial and f(X)
have integer coefficients). Therefore

(¢Z)2 — (" + ﬁn)¢; +q" = f(pq) = Q(qu)((bg —apq +q) =0,

as endomorphisms of £, by Theorem 4.10. Note that ¢y = ¢¢n. By Theo-
rem 4.10, there is only one integer k such that (bgn — k¢pgn + ¢ =0, and such
a k is determined by k = ¢" + 1 — #E(Fn). Therefore,

a"+ 0" =q¢"+1—-H#EF;m).

This completes the proof of Theorem 4.12. |
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Example 4.4
In Example 4.3, we showed that the elliptic curve E given by y? +xy = 23 +1
over Fy satisfies #F(F3) = 4. Therefore, a =2+ 1 — 4 = —1, and we obtain
the polynomial

X2+X+2:<X—_1+—\/__7) (X—_l_—\/__7>.

2 2
Theorem 4.12 says that
2

BE(F) =4+1- (—”TV—_?)Z)_ (—FTV—_?)

Rather than computing the last expression directly, we can use the recurrence
in Lemma 4.13:

So = as; —2sp = —(—1) —2(2) = —3.

It follows that #FE(Fy) =4+ 1 — (—3) = 8, which is what we calculated by
listing points.

Similarly, using the recurrence or using sufficiently high precision floating
point arithmetic yields

(—1+\/—_7)101+ (—1—\/—_7)101

5 5 = 2969292210605269.

Therefore,

#E(Faio1) = 2'01 41 — 2969292210605269
= 2535301200456455833701195805484.

[

The advantage of Theorem 4.12 is that it allows us to determine the group
order for certain curves very quickly. The disadvantage is that it requires the
curve to be defined over a small finite field.

4.3.2 Legendre Symbols

To make a list of points on y? = x3 + Ax + B over a finite field, we tried
each possible value of x, then found the square roots y of 23 + Az + B, if they
existed. This procedure is the basis for a simple point counting algorithm.

Recall the Legendre symbol (%) for an odd prime p, which is defined as
follows:

+1 if 2 =2 (mod p) has a solution t # 0 (mod p),
(—) =¢ —1if * =2 (mod p) has no solution ¢
0if x=0 (mod p).
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This can be generalized to any finite field F, with ¢ odd by defining, for
reF,,
+1 if t* = x has a solution ¢t € F,
(—) = ¢ —1if t* = x has no solution ¢t € F,
0if z =0.

THEOREM 4.14
Let E ke an elliptic curve defined by y? = 23 + Az + B over F,. Then

#E(F) =q+1+ )

x€Fy

>+ Az + B
F, '

PROOF For a given xg, there are two points (z,y) with z-coordinate xg
if 23 + Azo + B is a nonzero square in F,, one such point if it is zero, and no

points if it is not a square. Therefore, the number of points with z-coordinate

m8+Ax¢+B
F

xo equals 1 + ( ) Summing over all g € F,, and including 1 for

q

the point oo, yields

HEF) =1+ > <1+ (W—(TM)) .

z€F,

Collecting the term 1 from each of the ¢ summands yields the desired formula.

COROLLARY 4.15
Let z° + Az + B be a polynom ialwith A, B € F,;, where ¢ is odd. Then

34+ A4 B
3 (%) <2/a
Fq

z€F,

PROOF When 23 + Az + B has no repeated roots, y?> = 23 + Az + B gives
an elliptic curve, so Theorem 4.14 says that

(:133+Aa:—|—B)

¢+ 1—#EF,) =- > F
q

z€F,

The result now follows from Hasse’s theorem.
The case where 23 + Az 4+ B has repeated roots follows from Exercise 4.3.
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Example 4.5
Let E be the curve y? = 23 4+ x + 1 over F5, as in Example 4.1. The nonzero
squares mod 5 are 1 and 4. Therefore
Sy +z+1
#E(Fs) =5+1 +; (T)

(@6

=6+1-1+1+1+1=09.

When using Theorem 4.14, it is possible to compute each individual gen-
eralized Legendre symbol quickly (see Exercise 4.4), but it is more efficient
to square all the elements of F; and store the list of squares. For simplicity,
consider the case of F,,. Make a vector with p entries, one for each element
of F,. Initially, all entries in the vector are set equal to —1. For each j with
1 <j<(p—1)/2, square j and reduce to get & mod p. Change the kth entry
in the vector to +1. Finally, change the Oth entry in the vector to 0. The
resulting vector will be a list of the values of the Legendre symbol.

Theorem 4.14, which is sometimes known as the Lang-Trotter method,
works quickly for small values of ¢, perhaps ¢ < 100, but is slow for larger ¢,
and is impossible to use when ¢ is around 10'°° or larger.

4.3.3 Orders of Points

Let P € E(F;). The order of P is the smallest positive integer k such that
kP = oo. A fundamental result from group theory (a corollary of Lagrange’s
theorem) is that the order of a point always divides the order of the group
E(F,). Also, for an integer n, we have nP = oo if and only if the order of
P divides n. By Hasse’s theorem, #E(F) lies in an interval of length 4,/g.
Therefore, if we can find a point of order greater than 4,/q, there can be only
one multiple of this order in the correct interval, and it must be #E(F,).
Even if the order of the point is smaller than 4,/q, we obtain a small list
of possibilities for #E(F,). Using a few more points often shortens the list
enough that there is a unique possibility for #E(F,). For an addiitonal trick
that helps in this situation, see Proposition 4.18.

How do we find the order of a point? If we know the order of the full group
of points, then we can look at factors of this order. But, at present, the order
of the group is what we’re trying to find. In Section 4.3.4, we’ll discuss a
method (Baby Step, Giant Step) for finding the order of a point.
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Example 4.6

Let E be the curve y? = 23+ 7z +1 over Fjg;. It is possible to show that the
point (0, 1) has order 116, so N1g1 = #E(F101) is a multiple of 116. Hasse’s
theorem says that

101 +1 —2v101 < Nyjp; <101 + 1+ 2v101,

which means that 82 < Njg; < 122. The only multiple of 116 in this range is
116, so N1g1 = 116. As a corollary, we find that the group of points is cyclic
of order 116, generated by (0,1). I

Example 4.7

Let E be the elliptic curve y? = 23 — 10z + 21 over Fs57. The point (2, 3) can
be shown to have order 189. Hasse’s theorem implies that 511 < N557 < 605.
The only multiple of 189 in this range is 3 - 189 = 567. Therefore N557 = 567.

Example 4.8

Let E be the elliptic curve y? = 23 + Tz + 12 over Fyp3. The point (—1,2)
has order 13 and the point (19,0) has order 2. Therefore the order Ny of
E(F103) is a multiple of 26. Hasse’s theorem implies that 84 < Njg3 < 124.
The only multiple of 26 in that range is 104, so Nyg3 = 104.

Example 4.9

Let E be the elliptic curve y? = 2342 over F7, as in Example 4.2. The group
of points E(F7) is isomorphic to Zs & Z3. Every point, except 0o, has order
3, so the best we can conclude with the present method is that the order N7
of the group is a multiple of 3. Hasse’s theorem says that 3 < N; < 13, so the
order is 3, 6, 9, or 12. Of course, if we find two independent points of order 3
(that is, one is not a multiple of the other), then they generate a subgroup of
order 9. |:IThis means that the order of the full group is a multiple of 9, hence
is 9.

The situation of the last example, where E(F,) ~ Z,, & Z,,, makes it more

difficult to find the order of the group of points, but is fairly rare, as the next
result shows.

PROPOSITION 4.16
Let ' ke an elliptic curve over F;, and suppose

E(F,) ~ Zp & Zn,

for som e nteger n. Then eitherg=n?+1orqg=n’+n+1orq= (n:l:l)z.
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PROOF By Hasse’s theorem, n? = ¢ + 1 — a, with |a| < 2,/g. To prove
the proposition, we use the following lemma, which puts a severe restriction
on a.

LEMMA 4.17
a=2 (modn).

PROOF Let p be the characteristic of F,. Then p { n; otherwise, there
would be p? points in E|[p], which is impossible in characteristic p by Theo-
rem 3.2.

Since E[n|] C E(F,), Corollary 3.11 implies that the nth roots of unity
are in Fy, so ¢ — 1 must be a multiple of n (see Appendix C). Therefore,

a=q+1—-n%2=2 (mod n).
Write a = 2 + kn for some integer k. Then
nP=qg+l—a=qg—1—kn, so g=n’+kn+1.

By Hasse’s theorem,

12+ kn| <2,/

Squaring this last inequality yields
44 dkn + k*n® < 4qg = 4(n* + kn + 1).

Therefore, |k| < 2. The possibilities £ = 0, +£1, £2 give the values of ¢ listed
in the proposition. This completes the proof of Proposition 4.16. i

Most values of ¢ are not of the form given in the proposition, and even
for such ¢ most elliptic curves do not have E(F,) ~ Z,, & Z,, (only a small
fraction have order n?), so we can regard Z,, @ Z,, as rare.

More generally, most ¢ are such that all elliptic curves over F, have points
of order greater than 4,/q (Exercise 4.6). Therefore, with a little luck, we can
usually find points with orders that allow us to determine #E(F,).

The following result of Mestre shows that for £ defined over F,,, there is
a point of sufficiently high order on either E or its quadratic twist. The
quadratic twist of E is defined as follows. Let d € F)’ be a quadratic non-
residue mod p. If E has equation y? = 23 + Ax + B, then the quadratic twist
E’ has the equation y* = 2% + Ad?z + Bd? (see Exercise 2.23). By Exercise
4.10, if #E(F,) =p+1 —a then E’ has p + 1 + a points. Once we know the
order of one of these two groups, we know a and therefore know the order of
both groups.
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PROPOSITION 4.18
Letp > 229 e prime and ket F ke an elliptic curve over F,,. Either I/ or
its quadratic twist E’ has a point P whose order has only cne m ultplke in the

nterval (p+1-2,p, p+1+2p).

PROOF  Let
E(F,) ~ Zp ® Zy, E'(F,) ~Z, & Zy,

with m|M and n|N. If mM = #E(F,) =p+1—a, then nN = #E'(F,) =
p+ 1+ a. Since m|M and n|N, we have m?|p + 1 — a and n?[p + 1 + a.
Therefore, ged(m?,n?)|2a.

Since E[m] C E(F,), then p,,, C F); by Corollary 3.11, so p=1 (mod m).
Therefore, 2 —a =p+1—a = 0 (mod m). Similarly, 2+ a = 0 (mod n).
Therefore, ged(m, n)|(2 — a) + (2 + a) = 4, and ged(m?, n?)|16.

If 4}m and 4|n, then 16| ged(m?,n?), which divides 2a. Then 8|a, which is
impossible since then 2—a = 0 (mod m) implies 2—0 = 0 (mod 4). Therefore,
ged(m?,n?)|4. This implies that the least common multiple of m? and n? is
a multiple of m2n?/4.

Let ¢ be the pth power Frobenius endomorphism for E. Since E[n] C
E(F,), it follows that ¢ acts trivially on E[n]. Choose a basis for F[n?]. The
action of ¢ on E[n?] is given by a matrix of the form

1+sn tn
un 14+wvn )

By Proposition 4.11, we have a = 2+ (s +v)n (mod n?) and p= 1+ (s +v)n
(mod n?). Therefore, 4p—a? = 0 (mod n?). Similarly, 4p—a? =0 (mod m?).

It follows that the least common multiple of m? and n? divides 4p — a?, so

m?2n?

4

< 4p — a>.
Suppose that both M and N are less than 4,/p. Then, since a? < 4p,

p-1)2<p+1)?—a>=@p+1-a)p+1+a)=mMnN
< (4(4p — a®))"? (4y/p)? < 64p*/2.

A straightforward calculation shows that this implies that p < 4100. We have
therefore shown that if p > 4100, then either M or N must be greater than
4,/p. This means that either £ or £’ has a point of order greater than 4,/p.
Therefore, there can be at most one multiple of this order in the interval
(p +1-2p,p+1+ 2\/1_)) This proves the theorem for p > 4100.

Suppose now that 457 < p < 4100. A straightforward computation shows
that there are no integers a,m,n with |a| < 2,/p such that
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—_

.m2p+1—a

[\

.nip+1+a
(p+1—a)/m<4/p
(p+1+a)/n<4p.

Therefore, the theorem is true for p > 457.

For p = 457, we may take a = 10, m = 8, n = 6, which correspond
to the groups Zs ® Zss and Zg @ Z7g (and can be realized by the curves
E : y? = 23125 and its quadratic twist £’ : y? = 23—1). Note, however, that
the only multiple of 56 in the interval (457 +1—2V457, 457+ 1 + 2@) =
(415.2, 500.8) is 448, which is the order of E(F457). Similarly, the only mul-
tiple of 78 in this interval is 468, which is the order of E’(F457). Therefore,
the theorem still holds in this case.

In fact, the search for a, m,n can be extended in this way to 229 < p < 457,
with conditions (3) and (4) replaced by

Ll

3’. there is more than one multiple of (p + 1 — a)/m in the interval
(p+1-2yp, p+1+2p)

4’. there is more than one multiple of (p + 1 4 a)/m in the interval
(p+1-2yp, p+1+2yp).

No values of a, m,n exist satisfying these conditions, so the theorem holds.

Example 4.10

The theorem is false for p = 229. Consider the curve E : y? = 23 — 1.
A calculation shows that E(Fag9) ~ Zg ® Zso. Therefore, 42P = oo for
all P € E(Fa29). The Hasse bound says that 200 < #E(Fa29) < 260, so the
existence of a point of order 42 allows both the values 210 and 252. Since 2 is a
quadratic nonresidue mod 229, the curve E’ : y? = 23 —8 is the quadratic twist
of E. A calculation shows that E'(Fag9) ~ Zy @ Zsy. Therefore, 52P = oo
for all P € E'(Fa29). The existence of a point of order 52 allows both the
values 208 and 260. Therefore, neither E nor its quadratic twist £’ has a
point whose order has only one multiple in the Hasse interval. [

Suppose E(F,) ~ Z,,, ® Z,,, with n;|nys. Then the order of every element
divides no. If we choose some random points and compute their orders, what
is the chance that the least common multiple of these orders is ny? Let Py, P
be points of orders nq, ng such that every P € E(F,) is uniquely expressible in
the form P = a1 P; 4+ as P> with 0 < a; < n;. Let p be a prime dividing ny. If
we take a random point P, then the probability is 1 —1/p that p{ as. If p1 as,
then the order of P contains the highest power of p possible. If p is large,
then this means that it is very likely that the order of one randomly chosen
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point will contribute the correct power of p to the least common multiple of
the orders of the points. If p is small, say p = 2, then the probability is at
least 1/2. This means that if we choose several randomly chosen points, the
least common multiples of their orders should still have the correct power of
p. The conclusion is that if we choose several random points and compute the
least common multiple of their orders, it is very likely that we will obtain na,
which is as large as possible.

The following result of Cremona and Harley shows that knowledge of ng
usually determines the group structure.

PROPOSITION 4.19
Let E be an elliptic curve over F,. W rite E(F,) ~ Z,, & Z,, with ni|ng.
Suppose that ¢ is not one of the follow ing:

3,4,5,7,9,11,13,17,19, 23, 25,27, 29, 31, 37,
43,61,73,181,331, 547.

Then ny unigquely determ nesn; .

PROOF Fix ¢ and suppose there exist ng, z,y (regard z,y as two possible
values of ny) with

L. x,y|n2

2. (Vi—1)° <npx <may < (yg+1)°

(so the groups of order noz and noy satisfy the bounds in Hasse’s theorem).
Our first goal is to show that if ng,x,y satisfying (1) and (2) exist then
q < 4612.

Let d = ged(x,y). Then nb, = dny, 2’ = x/d,y’ = y/d also satisfy (1), (2).
So we may assume that ged(x,y) = 1. Since nay — ngoz > 0,

ny < gy —nox < (Vg +1)° — (Vg —1)° = 4/4.
Since x, y|n2, we have xy|ns, hence xy < ng. Therefore,
2? < zy < ns < 44/q,

which implies that

(Va— 1)2 < ngzx < (44/4) (4\/[])1/2.

But (\/6 — 1)2 > 8¢%/* when ¢ > 4613. Therefore, we must have ¢ < 4612.

The values of ¢ < 4612 can be checked on a computer to get a much smaller
list of possibilities for q. However, we can speed up the search with the
following observations.
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First, (\/6— 1)2 < ngr < 4,/qr implies that = > (\/6— 2) /4. Second,

y? < may < (Va3 + 1)2. Third, zy? = (zy)y < noy < (Vg + 1)2. Finally,
n1|q — 1 (by Corollary 3.11), so x,y|q — 1.

Therefore, we should look for values of ¢ < 4612 that are primes or prime
powers and such that ¢ — 1 has divisors x,y with

1. ged(z,y) =1
2. (Vi—2)/4<z<y<. q+1

3. wy? < (\/64— 1)2.

The values of ¢ for which such z, y exist are those on the list in the statement
of the theorem, plus the five values ¢ = 49,81,121,169,841. Therefore, for
all other ¢, a number ns cannot have two possible values x,y for nq, so ny is
uniquely determined.

We need to eliminate the remaining five values. For example, consider
¢ =49. One solution is ¢ = 2,y = 3, ny = 18, which corresponds to #E(F,) =
36 and 54. By Theorem 4.4, or by Exercise 4.14, if #E(F,) = (\/6— 1)2,
then E(F,) ~ Z 51 ® Z 4-1. Therefore, if #FE(Fy9) = 36, we must have
ny = ng = 6. This arises from x = 2 after multiplying by 3 (recall that
we removed d = ged(x,y) from x,y in order to make them relatively prime).
Multiplying y = 3 by d = 3 yields ny = 9, no = 6, which does not satisfy nq|ns.
Therefore, the solution x = 2,y = 3 for ¢ = 49 is eliminated. Similarly, all
solutions for all of the five values ¢ = 49,81, 121,169, 841 can be eliminated.
This completes the proof.

4.3.4 Baby Step, Giant Step

Let P € E(F;). We want to find the order of P. First, we want to find
an integer k such that kP = co. Let #E(F,) = N. By Lagrange’s theorem,
NP = oo. Of course, we might not know N yet, but we know that ¢g+1-2,/q <
N < q+1+2,/q. We could try all values of N in this range and see which
ones satisfy NP = co. This takes around 4,/q steps. However, it is possible

1/4

to speed this up to around 4q"/* steps by the following algorithm.

1. Compute Q = (¢ + 1)P.

1/4

2. Choose an integer m with m > ¢*/*. Compute and store the points j P

for j=0,1,2,...,m.
3. Compute the points
Q + k(2mP) for k=—-—m,—(m—1),...,m
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until there is a match @ + k(2mP) = +j P with a point (or its negative)
on the stored list.

4. Conclude that (¢ + 1+ 2mk F j)P = co. Let M = q+ 1+ 2mk F j.
5. Factor M. Let pq,...,p, be the distinct prime factors of M.

6. Compute (M /p;)P fori=1,...,r. If (M/p;)P = oo for some i, replace
M with M /p; and go back to step (5). If (M /p;)P # oo for all i then
M is the order of the point P.

7. If we are looking for the #E(F,), then repeat steps (1)-(6) with ran-
domly chosen points in E(F,) until the least common multiple of the
orders divides only one integer N with ¢+1—-2,/g < N <q+1+2,/q.
Then N = #E(F,).

There are two points that must be addressed.
I. Assuming that there is a match, this method clearly produces an integer
that annihilates P. But why is there a match?

LEMMA 4.20
Let a be an integer with |a| < 2m?. There exist integers ap and a; with
—m < ayp <mand —m < a; <m such that

a = ag+ 2may.

PROOF Let ap = a (mod 2m), with —m < ag < m and a1 = (a—agp)/2m.

Then
la1| < (2m? +m)/2m < m + 1.
|
Let a = ag + 2may be as in the lemma and let kK = —ay. Then

Q+ k(2mP) = (¢+1—2ma,)P
=(q+1—a+ay)P=NP+agP
:CL()P: :EJP,

where j = |ag|. Therefore, there is a match.

I1. Why does step (6) yield the order of P?

LEMMA 4.21

Let G e an additive group (with identity elem ent 0) and ket g € G'. Suppose
Mg = 0 for som e positive Integer M . Let p1,...,p, ke the distinct primes
dividing M . If (M /p;)g # 0 for alli, then M is the order of g.
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PROOF Let k be the order of g. Then k|M. Suppose k # M. Let p; be
a prime dividing M /k. Then p;k|M, so k|(M/p;). Therefore, (M/p;)g = 0,
contrary to assumption. Therefore k = M.

Therefore, step (6) finds the order of P.

REMARK 4.22 (1) To save storage space, it might be more efficient to
store only the x coordinates of the points jP (along with the corresponding
integer j), since looking for a match with +j5P only requires the z-coordinate
(assuming we are working with a Weierstrass equation). When a match is
found, the two possible y-coordinates can be recomputed.

(2) Computing @ + k(2mP) can be done by computing ) and 2mP once
for all. To get from Q+k(2mP) to Q@+ (k+1)(2mP), simply add 2mP rather
than recomputing everything. Similarly, once j P has been computed, add P
to get (j +1)P.

(3) We are assuming that we can factor M. If not, we can at least find all
the small prime factors p; and check that (M/p;)P # oo for these. Then M
will be a good candidate for the order of P.

(4) Why is the method called “Baby Step, Giant Step”? The baby steps
are from a point jP to (j + 1)P. The giant steps are from a point k(2mP)

to (k4 1)(2mP), since we take the “bigger” step 2mP. i

Example 4.11
Let E be the elliptic curve y? = 23 — 10z + 21 over Fs57, as in Example 4.7.
Let P = (2,3). We follow the procedure above.

1. @ = 558P = (418, 33).
2. Let m = 5, which is greater than 557'/4. The list of jP is

00, (2,3), (58,164), (44,294), (56,339), (132, 364).

3. When k = 1, we have @Q + k(2mP) = (2, 3), which matches the point on
our list for 7 = 1.

4. We have (¢ + 1+ 2mk — j)P = 567P = oc.

5. Factor 567 = 3*-7. Compute (567/3)P = 189P = co. We now have 189
as a candidate for the order of P.

6. Factor 189 = 337. Compute (189/3)P = (38,535) # oo and (189/7)P =
(136,360) # oo. Therefore 189 is the order of P.

As pointed out in Example 4.7, this suffices to determine that #E(F557) =
567. [
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4.4 A Family of Curves

In this section we give an explicit formula for the number of points in E(F,),
where F is the elliptic curve

y? =% — kax,
and k # 0 (mod p). Counting the points on this curve mod a prime p has a
long history, going back at least to Gauss.

THEOREM 4.23
Letp be an odd prime and ket k # 0 (mod p). Let N, = #E(F,), where E
is the elliptic curve
y? =2 — k.
1. Ifp=3 (mod4), then N, =p+1.

(
2. Ifp=1 (mod 4), write p = a? + b?, where a, b are ntegers with b even
anda+b=1 (mod 4). Then

p+1—2a ifk isa fourth powermod p
Np,=4qp+1+2a ifk isa squaremod p but not a 4th powermod p
p+1+2b ifk isnota square mad p.

The proof of the theorem will take the rest of this section.

The integer a is uniquely determined by the conditions in the theorem, and
b is uniquely determined up to sign. When £ is not a square mod p, the proof
below does not determine the sign of b. This is a much more delicate problem
and we omit it.

Example 4.12
Let p = 61 = (=5)% + 62, where we chose the negative sign on 5 so that

—5+46 =1 (mod 4). Since k = 1 is a fourth power, the number of points on
y?=a—xzisp+1-2(-5H) =72 I

It is well known that every prime p = 1 (mod 4) is a sum of two squares
(this follows from Proposition 4.27 below). The next lemma shows that a and
b are uniquely determined up to order and sign.

LEMMA 4.24
Suppose p is prim e and a, b, ¢, d are ntegers such that a? + b% = p = ¢ +d>.
Then a = +tcand b= +d,ora = +d and b = +c.
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PROOF We have (a/b)*+1 = 0= (¢/d)?>+1 (mod p), soa/b = +(c/d). By
changing the sign of ¢ if necessary, we may assume that a/b = ¢/d (mod p),
hence ad — bc =0 (mod p). A quick calculation shows that

p? = (ac+ bd)? + (be — ad)*. (4.2)
Suppose ad = bc. Then (4.2) implies that ac + bd = £p, so
+ap = a’c + abd = a’c + b*c = pe.

Hence, +a = c. It follows that b = +d.

Now suppose ad # bc. Since ad —be = 0 (mod p), we have (ad — bc)? > p2.
Since (ac+ bd)? > 0, it follows from (4.2) that ad — bc = £p and ac + bd = 0.
Therefore,

+ep = acd — be? = —bd? — be? = —bp,

so ¢ = £b. This implies that d = *a. |

If we require that a is odd and b is even, then a and b are uniquely deter-
mined up to sign. Suppose b = 2 (mod 4). Then a +b = 1 (mod 4) for a
unique choice of the sign of a. Similarly, if b = 0 (mod 4), there is a unique
choice of the sign of a that makes a + b =1 (mod 4). Therefore, the integer
a in the lemma is uniquely determined by p if we require that a is odd and
a+b=1 (mod 4).

The main part of the proof of Theorem 4.23 involves the case p = 1 (mod 4),
so let’s treat the case p = 3 (mod 4) first. The main point is that —1 is
not a square mod p (Proof: if 22 = —1, then 1 = 2P~ = (22)P~1/2 =
(—1)P=1/2 = (—1)Odd = —1, contradiction). Moreover, a nonsquare times
a nonsquare is a square mod p. Therefore 2 — kz is a nonzero square mod
p if and only if (—x)3 — k(—x) = — (23 — k) is not a square mod p. Let’s
count points on E. Whenever 23 — kx = 0, we obtain one point (x,0). For
the remaining values of x, we pair up x and —x. One of these gives two
points (the one that makes 2 — kx a square) and the other gives no points.
Therefore, each pair x, —x gives two points. Therefore, we obtain a total of p
points. The point oo gives one more, so we have p + 1 points.

Now assume p = 1 (mod 4). The proof, which takes the rest of this sec-
tion, involves several steps and counts the points in terms of Jacobi sums.
Rather than count the points on E directly, we make the transformation (see
Theorem 2.17)

2(v+1 4(v+1
P 0ED) D)
which changes E into the curve C given by

v? = (k/4)u* + 1.

The inverse transformation is
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We’ll count the points on C' mod p.

First, there are a few special points for the transformation from E to C'. The
point co on E corresponds to (0,1) on C. The point (0,0) on E corresponds
to (0,—1) on C (see Theorem 2.17). If k is a square mod p, then the two
2-torsion points (:I:\/E, 0) correspond to the point at infinity on C'. Therefore,

#E(F,) = #{(u,v) € F, x F,, |v? = (k/4)u* + 1} + 6,

where
5— {2 if k£ is a square mod p

0 if not.

Let g be a primitive root mod p, which means that
F={g|0<j<p—1}.
Let i = v/—1 € C. Define
x2(¢’) = (1) and  xa(¢’) =#.

Then y2 and x4 can be regarded as homomorphisms from F to {£1, +i}.
Note that x7 = x2. The following lemma gets us started.

LEMMA 4.25
Letp =1 (mod 4) ke prime and tx € F . Then

1
#{ucF) |u? =2} = ng(aj)e,

=0
and

#{ueF) |u* =2} = ZX4(3})€.

£=0

PROOF  Since p =1 (mod 4), there are 4 fourth roots of 1 in F. There-
fore, if there is a solution to u* = x, there are 4 solutions. Write z = ¢’
(mod p). Then z is a fourth power mod p if and only if j =0 (mod 4). We

have
3

3
y 4if j=0 (mod 4)
0 _ gl _ J
ZX4($) _ZZ _{Oif 1 Z0 (mod 4),
=0 =0 J

which is exactly the number of u with u* = z. This proves the second half of
the lemma. The proof of the first half is similar.

If, instead, we sum over the elements of F 7, we have the following result.
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LEMMA 4.26
Letp =1 (mod 4) ke prine. Then

B —1 i /(=0 (mod4)
ZX‘l(b)g—{po i 020 (mod 4).

bEF )

PROOF If / =0 (mod 4), all the terms in the sum are 1, so the sum is
p—1. If £ # 0 (mod 4), then y4(g)* # 1. Multiplying by g permutes the
elements of F ', so

Xa(@)' D xa®) =) xalgh) = > xalo),

beF ) bEF ) cEFY
which is the original sum. Since x4(g)¢ # 1, the sum must be 0. |

Define the Jacobi sums by

TOd:x4) = Y xe(a)xa(l —a)".
aEF;;
a#l

PROPOSITION 4.27
J(x2,x3) = —1 and |J(x2, x4)|* = p.

PROOF The first equality is proved as follows.

J(x2,x1) = D xel@)xa(l—a)* = > xa(a)x2(1—a),

aEF;; G#O,l
a#l
since x5 = x2. Since x2(a) = %1, we have x2(a) = x2(a)~! so the sum equals

= ru o= 3 (15

a#0,1 a#0,1

The map =z — 1 — % gives a permutation of the set of z € Fj,, x # 0,1.
Therefore, letting ¢ = 1 — 1/a, we obtain

> xe (é - 1) =Y xa(—¢) = —xa(-1),

a#0,1 c#0,1

by Lemma 4.26. Since g??~1)/2 = —1 (mod p) (both have order 2 in the cyclic
group F '), we have

1= (£1)% = x2(gP V)2 = xu(¢PV/2) = xa(-1).
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This yields the first equality of the proposition.
To prove the second equality, multiply the Jacobi sum by its complex con-
jugate to obtain

T2 xa)l = D xe(@)xa(l—a) > xa(b)xa(1—b)

a#0,1 b£0,1
=Y Yoel(i)u(i)
p— 2 _ 4 .

a#0,1 b£0,1 b 1-0b

We have used the fact that y4(z) = xa(z)~!. We now need the following.

LEMMA 4.28

Let S = {(z,y) |r,y €F; 2,y # 1; 2 #y}. Themap

(z.1) (:c 1—x)
o:(z,y)— | -,
y 11—y

is a perm utation of S'.

PROOF Let c=xz/y and d = (1 —xz)/(1 —y). Then x # 0 yields ¢ # 0
and x # 1 yields d # 0. The assumption that x # y yields ¢,d # 1 and ¢ # d.
Therefore, (c,d) € S.

To show that o is surjective, let ¢,d € S. Let

d—1 d—1
rT=c = :
i—c YT d—c¢
It is easily verified that (c,d) € S implies (x,y) € S and that o(x,y) = (¢, d).

Returning to the proof of the proposition, we find that

et =S () (15) + 2 e (5)

(a,b)eS

=(p—2)+ ) xa(0)xa(d)

(c,d)eS

= (P=2)+ D xald [ D x2(e0) = x2(1) = xa2(d)

d#0,1 ceF )
=(p-2)+ Y xa(d)(0—1-xa(d)?)
d£0,1
=(p-2) = > xald) = ) xa(d)?
d£0,1 d£0,1

=(p—2) + xa(l) + x2(1)® = p.
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This completes the proof of the second equality of Proposition 4.27. i
We now show that the number of points on v? = (k/4)u* + 1 can be ex-

pressed in terms of Jacobi sums. By separating out the terms with v = 0 and
the terms with v = 0, we obtain that the number of points is

H{v|v? =1} + #{u|u* = —4/k}

+ > #{v]v? =a} #{ulu' = —4b/k}
(ZJ,rbb;OI

I SRS SR S SR SeRar L

j=0 £=0 fbbioly =0 £=0
= X2(1) Z (—4/k) + ZM —4b/k)"
=0 =0 b£0,1 £=0
+ Y Z)@(a)j —(p—2)
a#0,1 j=0

+xa(—4/k)? T (X2, X3) + Xa(=4/k) T (X2, Xa) + Xa(=4/k)> T (x2, x3)

(Separate out the terms with j = 0 and ¢ = 0. These yield the sums over ¢
and over j, respectively. The terms with j = ¢ = 0, which sum to p — 2, are
counted twice, so subtract p — 2. The terms with j,¢ # 0 contribute to the
Jacobi sums.)

1

Z x2(a) +> > xa(—4b/k)" = (p—2)

=0 (=0 b0
—Xz( 4/k) + Xa(—4/k)J (X2, X4) + Xa(—4/k)> T (x2, X3)

Q

=(-)+-1)-(@-2)
—x2(—4/k) + xa(=4/k) T (X2, Xa) + Xxa(=4/k)* T (x2, x3)
(by Lemma 4.26)
=p+1—38+4 xa(—4/k)J(x2,Xa) + Xa(—4/k)* T (x2,X3)-
For the last equality, we used the fact that

0 if k is not a square

1+ x2(—4/k) =1+ x2(1/k) = {2 if k is a square mod p
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hence 1 + x2(—4/k) = 6. Therefore,
#E(F,) = #{(u,v) € F, x F, |v? = (k/4)u* +1} +6
=p+l—-a—q,

where
o= —xa(—4/k)J(x2, x4) € Z[i].
If we write « = a + bi, then o + @ = 2a. Proposition 4.27 implies that
a® + b? = p, so we have almost proved Theorem 4.23. It remains to evaluate
a mod 4.
Let z1 + y11, x2 + yoi € Z[i]. We say that

1+ Y11 = x9 + Y21t (mod 2 + 2i)
if
(a:l — 332) + (y1 — yz)’i = ($3 + y3i)(2 —+ 2i)

for some x3+ysi € Z[i]. Clearly —2i =2 (mod 2+2i). Since 2i—2 = (24 2i)
and —2 =2+ (—1414)(2 + 27), we have

20=2=-2=-2i (mod 2+ 2i).
It follows easily that
2x4(a) =2 (mod 2 + 24) (4.3)

for all a. Since p — 1 is a multiple of 4 = (1 —4)(2 + 2i), we have p = 1
(mod 2 + 21).

LEMMA 4.29
Letp=1 (mod 4) be prine. Then

J(x2,x4) = —1 (mod 2 + 2i).

PROOF Let S={z € F |z # 1}. Let

X

T:5—>S8, x+— .
x—1

It is easy to check that 7(7(x)) = = for all z € S and that = = 2 is the only
value of z such that 7(z) = z. Put the elements of S, other than 2, into
pairs (x,7(z)). Note that if z is paired with y = 7(z), then y is paired with
7(y) = 7(7(z)) = z. This divides S into (p — 3)/2 pairs plus the element 2,
which is not in a pair. We have

J(x2,x4) = Y xa(a)xa(l —a) =
a#0,1

wa-2+ ¥ (e@at-o (75 ) u(1-25)),

(a,7(a))
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where the sum is over pairs (a,7(a)). Note that since yox4 = X ', we have

e <a—1> ( a_1>=X;EZ<f)1)Xf?§__11)

x2(a)xa(=1)xa(a = 1) = x2(a)xa(l —a).
X4(2)? = xa(4),

J(x2:xa) = xa(=4) +2 > x2(a)xa(l—a)
(a,7(a))
=xa(-4)+ Y 2 (by (43))
(a,7(a))
=xa(—4)+ (p—3) =xa(—4) —2 (mod 2+ 2i).

Therefore, since x2(2) =

Suppose p = 1 (mod 8). Since ¢?~1/2 = —1 (mod p), we have that —1 is a
fourth power. It is well known that 2 is a square mod p if and only if p = £1
(mod 8) (this is one of the supplementary laws for quadratic reciprocity and
is covered in most elementary number theory texts). Therefore 4 is a fourth
power when p =1 (mod 8). It follows that y4(—4) = 1.

Now suppose p = 5 (mod 8). Then 2 is not a square mod p, so 2 = ¢’
(mod p) with j odd. Therefore

—4 = g2+=D/2 (mod p).

Since 25 = 2 (mod 4) and (p — 1)/2 = 2 (mod 4), it follows that —4 is a
fourth power mod p. Therefore, x4(—4) = 1.
In both cases, we obtain J(x2,x4) = xa(—4) —2 = —1 (mod 2 + 2i). i

Since we just proved that x4(—4) = 1, the lemma implies that

a = —xa(—4/k)J (x2, xa) = —xa(1/k)J (x2, xa) = xa(k)? (mod 2 + 2i).
LEMMA 4.30
Leta =+ yi € Z[i] .

1. fa=1 (mod 2+2i), then z iscddand z +y =1 (mod 4).

2. Ifa=-1 (mod 2+ 2i), then x isodd and z +y = 3 (mod 4).

3. Ifa = +i (mod 2+ 2i), then x is even.
PROOF Suppose a =1 (mod 2+ 2i), so a« — 1 = (u+iv)(2 + 2i) for some
u,v. Since (1 —1)(2 + 2¢) = 4, we have

(z+y—1)+@y+1—a)i=(1—1i)(a—1)=4u+ 4vi.
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Therefore, z +y = 1 (mod 4) and z — y = 1 (mod 4). It follows that y is
even. This proves (1). The proofs of (2) and (3) are similar.

If k is a fourth power mod p, then y4(k) =1, s0 a =1 (mod 2 + 2i¢). The
lemma yields a = a + bi with b even and a +b = 1 (mod 4). This proves
part of part (2) of Theorem 4.23. The other parts are proved similarly. This
completes the proof of Theorem 4.23.

4.5 Schoof’s Algorithm

In 1985, Schoof [97] published an algorithm for computing the number
of points on elliptic curves over finite fields F, that runs much faster than
existing algorithms, at least for very large ¢q. In particular, it requires at
most a constant times log8 g bit operations, in contrast to the ¢*/* used in
Baby Step, Giant Step, for example. Subsequently, Atkin and Elkies refined
and improved Schoof’s method (see Section 12.4). It has now been used
successfully when ¢ has several hundred decimal digits. In the following, we’ll
give Schoof’s method. For details of the method of Atkins and Elkies, see [12]
and [99]. For other methods for counting points, see [60] and [94].

Suppose E is an elliptic curve given by y?> = z3 + Az + B over F,. We
know, by Hasse’s theorem, that

#EF,) =q+1—a, with|a| <2/q.

Let S ={2,3,5,7,...,L} be a set of primes such that

I1¢>4va

les

If we can determine a mod ¢ for each prime ¢ € S, then we know a mod [] ¢,
and therefore a is uniquely determined.

Let £ be prime. For simplicity, we assume ¢ # p, where p is the characteristic
of F,. We also assume that ¢ is odd. We want to compute a (mod ).

If ¢ = 2, this is easy. If 23 + Az + B has a root e € F,, then (e,0) € E[2]
and (e,0) € E(F,), so E(F,) has even order. In this case, ¢+1—a =0
(mod 2), so a is even. If 23 + Az + B has no roots in Fy, then E(F,) has no
points of order 2, and a is odd. To determine whether 23 + Az + B has a root
in F,, we could try all the elements in F,, but there is a faster way. Recall
(see Appendix C) that the roots of x? — x are exactly the elements of F,.
Therefore, 23 + Az + B has a root in F if and only if it has a root in common
with 27 — . The Euclidean algorithm, applied to polynomials, yields the ged
of the two polynomials.
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If g is very large, the polynomial z? has very large degree. Therefore, it is
more efficient to compute x, = 2 (mod 23 + Ax + B) by successive squaring
(cf. Section 2.2), and then use the result to compute

ged(z, — , 2° + Az + B) = ged(2? — x, 2° + Az + B).

If the ged is 1, then there is no common root and a is odd. If the ged is not
1, then a is even. This finishes the case ¢ = 2.

In the following, various expressions such as x¢ and 29 will be used. They
will always be computed mod a polynomial in a manner similar to that just
done in the case ¢ = 2

In Section 3.2, we defined the division polynomials v,,. When n is odd, v,

is a polynomial in = and, for (z,y) € E(F,), we have
(z,y) € E[n] < 9, (x) = 0.

These polynomials play a crucial role in Schoof’s algorithm.
Let ¢, be the Frobenius endomorphism (not to be confused with the poly-
nomials ¢,, from Section 3.2, which are not used in this section), so

(bQ(x’y) = (xq7yq).

By Theorem 4.10,
<b2 —apqy +q=0.

Let (z,y) be a point of order ¢. Then

(quQ,yQQ) +q(z,y) = a(29,y7).

Let
g =q (mod¥), g <?/2.

Then q(z,y) = qu(x,y), so
(qu,yq2> + qo(z,y) = a(z9,y?).

Since (z?,y?) is also a point of order ¢, this relation determines a mod ¢. The
idea is to compute all the terms except a in this relation, then determine a
value of a that makes the relation hold. Note that if the relation holds for
one point (z,y) € E[{], then we have determined a (mod ¢); hence, it holds
for all (z,y) € E/].

Assume first that (xq2,yq2) # tqu(x,y) for some (z,y) € E[¢]. Then

def [ 2 .2
(@'y) = (27 57 ) + aula,y) # oo,
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soa # 0 (mod ¢). In this case, the z-coordinates of (:(:qQ, yq2> and qo(z,y) are

distinct, so the sum of the two points is found by the formula using the line
through the two points, rather than a tangent line or a vertical line. Write

i@, y) = (zj,y;)

for integers j. We may compute z; and y; using division polynomials, as in
Section 3.2. Moreover, x; = r; j(z) and y; = r2;(z)y, as on page 47. We

have
7 2
y =y 2
;C/ = q2—qe — .qu — xqe_
L5 — Tg,

2

Writing

(yq2 - er)Z =y (yq2_1 ~ T2,q, (I))
= (2° + Az + B) ((x?’ + Az + B)(qQ_l)/2 — Tz,qg(x))Q ;

and noting that z,, is a function of x, we change z’ into a rational function
of z. We want to find j such that

/ N q q
(@', y') = (5, yj)-

First, we look at the z-coordinates. Starting with (z,y) € E[{], we have
(2',y') = *+(%,y]) if and only if 2/ = 2%. As pointed out above, if this
happens for one point in E[¢], it happens for all (finite) points in E[¢]. Since

the roots of v, are the z-coordinates of the points in E[/], this implies that
¢’ —xf=0 (mod 1) (4.4)

(this means that the numerator of ' — a:;l. is a multiple of 1)y). We are using

here the fact that the roots of ¢, are simple (otherwise, we would obtain only
that 1, divides some power of =’/ —x?). This is proved by noting that there are
¢? — 1 distinct points of order ¢, since /¢ is assumed not to be the characteristic
of F,. There are (¢2 —1)/2 distinct z-coordinates of these points, and all of
them are roots of 1), which has degree (¢2 — 1)/2. Therefore, the roots of v
must be simple.

Assume now that we have found j such that (4.4) holds. Then

(2',y") = £(2, yj) = («], +y]).

To determine the sign, we need to look at the y-coordinates. Both y’/y and
y? /y can be written as functions of z. If

(V' —yi)/y=0 (mod ),

then a = j (mod ¢). Otherwise, a = —j (mod ¢). Therefore, we have found
a (mod /).
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It remains to consider the case where (xqz,yq2> = +q(x,y) for all (z,y) €

E[f. 1f
oo(z,y) = <wq2,yq2) = q(z,y),
then
adq(z,y) = ¢ (x,y) + q(z,y) = 2q(z,y),
hence

a*q(z,y) = a’dg(z,y) = (29)*(z,y).
Therefore, a’q = 4¢®> (mod ¢), so ¢ is a square mod /. If ¢ is not a square

mod ¢, then we cannot be in this case. If ¢ is a square mod ¢, let w? = ¢
(mod ¢). We have

(6q +w)(9g — w)(z,y) = (¢ — @)(z,y) = 0

for all (z,y) € E[{]. Let P be any point in E[¢]. Then either (¢, —w)P = oo,

so ¢pqP = wP, or P’ = (¢, — w)P is a finite point with (¢, + w)P’' = oo.

Therefore, in either case, there exists a point P € E[(| with ¢,P = fwP.
Suppose there exists a point P € E[(] such that ¢,P = wP. Then

00 = (¢7 — agg + )P = (¢ — aw + q) P,

so aw = 2q = 2w? (mod ¢). Therefore, a = 2w (mod ¢). Similarly, if there
exists P such that ¢,P = —wP, then a = —2w (mod ¢). We can check
whether we are in this case as follows. We need to know whether or not

(xquq) = j:w(:z:,y) = j:(xwayw) = (.Z‘w, j:yw)

for some (z,y) € E[{]. Therefore, we compute z¢ — z,,, which is a rational
function of z. If
ged(numerator(z? — xy,), ) # 1,

then there is some (z,y) € E[{] such that ¢4(x,y) = fw(z,y). If this happens,
then use the y-coordinates to determine the sign.

Why do we use the ged rather than simply checking whether we have 0 mod
1e? The ged checks for the existence of one point. Looking for 0 (mod )y)
checks if the relation holds for all points simultaneously. The problem is that
we are not guaranteed that ¢,P = +wP for all P € E[{]. For example,
the matrix representing ¢, on E[¢|] might not be diagonalizable. It might

0w
subspace.
If we have ged(numerator(z9 — z,,), 1) = 1, then we cannot be in the case

1 . . . :
be (w ) In this case, the eigenvectors for ¢, form a one-dimensional

(xQQ,yqz) = q(z,y), so the only remaining case is (a:qz,y‘f) = —q(z,y). In

this case, aP = (¢ + q)P = oc for all P € E[{]. Therefore, a =0 (mod £).
We summarize Schoof’s algorithm as follows. We start with an elliptic curve
E over F given by y? = 23+ Ax+B. We want to compute #E(F,) =q+1—a.
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1. Choose a set of primes S = {2,3,5,...,L} (with p € S) such that

[oes £ > 4va
2. If = 2, we have a = 0 (mod 2) if and only if ged(2®+ Ax+ B, 29 —1x) #
1.

3. For each odd prime ¢ € S, do the following.

(a) Let g¢ = ¢ (mod ¢) with |q| < £/2.

(b) Compute the z-coordinate z’ of
(o', y) = (x(f,yff) + qo(z,y) mod 1.

(¢) For j =1,2,...,(¢ —1)/2, do the following.
i. Compute the z-coordinate z; of (x;,y;) = j(z,y).
ii. If 2’ — 2% = 0 (mod ¥y), go to step (iii). If not, try the next
value of j (in step (c)). If all values 1 < j < (¢ — 1)/2 have
been tried, go to step (d).
iii. Compute y" and y;. If (y' — yg)/y = 0 (mod ), then a = j
(mod ¢). If not, then a = —j (mod /).

(d) If all values 1 < j < (¢ —1)/2 have been tried without success, let

w? = ¢ (mod /). If w does not exist, then a = 0 (mod ¢).

(e) If ged(numerator(x? — ), ¥¢) = 1, then a = 0 (mod ¢). Other-
wise, compute

ged(numerator((y? — yw)/y), o).

If this ged is not 1, then a = 2w (mod ¢). Otherwise, a = —2w
(mod /).

4. Use the knowledge of a (mod ¢) for each ¢ € S to compute a (mod []¥).
Choose the value of a that satisfies this congruence and such that |a| <
2,/q. The number of points in E(F;) is ¢ + 1 — a.

Example 4.13
Let E be the elliptic curve y? = 23 + 22 4+ 1 mod 19. Then

#E(Flg) =19+1—a.

We want to determine a. We’ll show that

1 (mod 2)
a=<¢ 2 (mod3)
3 (mod 5).
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Putting these together yields
a =23 (mod 30).

Since |a| < 2v/19 < 9, we must have a = —T7.
We start with £ = 2. We compute

v =27 +13x 4+ 14 (mod z* + 2z + 1)
by successive squaring (cf. Section 2.2) and then use the result to compute
ged(z? — 2, 2® + 224+ 1) = ged(2? + 120 + 14, 23 + 22 + 1) = 1.

It follows that 22 +2x + 1 has no roots in F19. Therefore, there is no 2-torsion
in E£(Fi9),s0 a=1 (mod 2).

For ¢ = 3, we proceed as in Schoof’s algorithm and eventually get to j = 1.
We have ¢? = 361 and we have ¢ = 1 (mod 3). Therefore, ¢, = 1 and we need
to check whether

(@0, 4%0) + (2,y) = (2%, ")

for (z,y) € E[3]. The third division polynomial is
Y3 = 3zt + 1222 + 122 — 4.

We compute the z-coordinate of (3¢, y3%1) + (z,y):

361 2 3 180 2
+2x+1 1
<y y> 361 ( 3 2 1) <<$ ) ) $361 z,

2361 _ o 2361 _ o

where we have used the relation y? = 23 + 22 + 1. We need to reduce this
mod 3. The natural way to start is to use the extended Euclidean algorithm
to find the inverse of #3%1 — z (mod 13). However,

ged(2® —z, Y3) =z —8 £ 1,

so the multiplicative inverse does not exist. We could remove = — 8 from the
numerator and denominator of

(2% + 22 +1)1%0 —1
1361 _ o

Y

but this is unnecessary. Instead, we realize that since x = 8 is a root of 3,
the point (8,4) € E(F19) has order 3. Therefore,

#E(F19)=194+1—a=0 (mod 3),

so a =2 (mod 3).
For ¢ = 5, we follow Schoof’s algorithm, eventually arriving at j = 2. Note
that
19=4=-1 (mod 5),
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so ¢y = —1 and
19(z,y) = —(z,y) = (z,—y) for all (x,y) € E[5].
We need to check whether

def

? def
(@',y) = (2%, %) 4 (2, —y) = +2(21%,y19) =

:I:(l'//,y//)

for all (x,y) € E[5]. The recurrence of Section 3.2 shows that the fifth division
polynomial is

Vs = 32(2% + 22 + 1)*(2°® + 102 + 202* — 202° — 8z — 8 — 8) — 3
= 522 + 1020 + 1728 + 527 + 2% + 92° + 122" + 223 + 522 4+ 8z + 8.

The equation for the z-coordinates yields

361 2 38 2
Y351 +y ? [ 3x°° + 2
“”:(m) ‘x%l“”z<w) 2" =" (mod s).

When 3?2 is changed to % + 2z + 1, this reduces to a polynomial relation in
x, which is then verified. Therefore,

a==42 (mod5).

To determine the sign, we look at the y-coordinates. The y-coordinate of
(', y") = (2351, 9301) + (z, —y) is computed to be

y(9z™ + 1321 + 152% + 1527 +182% + 172° +-82* +122° + 82 +6)  (mod 1s5).
The y-coordinate of (z”,y") = 2(x,y) is
y(132° + 1527 + 162 + 1327 + 82° + 62° + 172* + 182 + 87 +18)  (mod 15).
A computation yields
/ 119 _ d
(W' +y"7)/y=0 (mod 15).
This means that
19 19
(@', y) = (2", —y"7) = =2(z%,y?) (mod 5).

It follows that a = —2 (mod 5).

As we showed above, the information from ¢ = 2, 3,5 is sufficient to yield
a = —7. Therefore, #FE(F19) = 27. I
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4.6 Supersingular Curves

An elliptic curve E in characteristic p is called supersingular if E[p| =
{oc}. In other words, there are no points of order p, even with coordinates
in an algebraically closed field. Supersingular curves have many interesting
properties, some of which we’ll discuss in the present section.

Note: Supersingular curves are not singular curves in the sense of Sec-
tion 2.4. The term “singular” was used classically to describe the j-invariants
of elliptic curves with endomorphism rings larger than Z. These rings usually
are subrings of quadratic extensions of the rationals. The term “supersingu-
lar” refers to j-invariants of curves with even larger rings of endomorphisms,
namely, subrings of quaternion algebras. These ideas will be discussed in
Chapter 10.

The following result is useful because it gives a simple way of determining
whether or not an elliptic curve over a finite field is supersingular.

PROPOSITION 4.31

Let I e an elliptic curve over F, where ¢ is a power of the prim e num ber
p. Leta = ¢+ 1 — #E(F;). Then F is supersingulr if and only ifa = 0
(mod p), which is if and only f #E(F,;) =1 (mod p).

PROOF Write X? —aX +¢ = (X —a)(X — ). Theorem 4.12 implies that
#E(Fgn)=q"+1—(a" +6").
Lemma 4.13 says that s, = o™ + (3" satisfies the recurrence relation
S0 =2, 81 =0a, Sp+1=0aSy, — (qSn—1-

Suppose a = 0 (mod p). Then s; = a = 0 (mod p), and s,41 = 0 (mod p)
for all n > 1 by the recurrence. Therefore,

#E(Fpn)=q¢"+1—-s,=1 (mod p),

so there are no points of order p in E(F ) for any n > 1. Since F, = U,,>1Fyn,
there are no points of order p in E(Fq). Therefore, F is supersingular.

Now suppose a #Z 0 (mod p). The recurrence implies that s,11 = as,
(mod p) for n > 1. Since s; = a, we have s,, = a” (mod p) for all n > 1.
Therefore

#E(Fpn)=q¢"+1—-s,=1—a" (mod p).

By Fermat’s little theorem, a?~! =1 (mod p). Therefore, E(F ,,-1) has order
divisible by p, hence contains a point of order p. This means that F is not
supersingular.
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For the last part of the proposition, note that
#E(F,)=q+1—-a=1—-a (mod p),

so #E(F,;) =1 (mod p) if and only if a =0 (mod p). i

COROLLARY 4.32
Suppose p > 5 isa prime and F is defined over F),. Then F is supersingular
if and only ifa = 0, which is the case ifand only f #E(F,) =p+ 1.

PROOF [If a =0, then E is supersingular, by the proposition. Conversely,
suppose E is supersingular but a # 0. Then a = 0 (mod p) implies that
la| > p. By Hasse’s theorem, |a| < 2,/p, so we have p < 2,/p. This means

that p < 4. |

When p = 2 or p = 3, there are examples of supersingular curves with
a # 0. See Exercise 4.7.

For general finite fields Fg, it can be shown that if E defined over F, is
supersingular, then a? is one of 0, ¢, 2¢, 3q, 4q. See [98], [80], or Theorem 4.3.

In Section 3.1, we saw that the elliptic curve y? + asy = 2% 4+ asx + ag
in characteristic 2 is supersingular. Also, in characteristic 3, the curve y? =
23 + asx? + a4 + ag is supersingular if and only if a; = 0. Here is a way to
construct supersingular curves in many other characteristics.

PROPOSITION 4.33
Suppose q isodd and ¢ =2 (mod 3). Let B € F* . Then the ellptic curve E
given by y? = 23 + B is supershgular.

PROOF  Let ¢ : F — FJ be the homomorphism defined by (x) = 3.
Since ¢ — 1 is not a multiple of 3, there are no elements of order 3 in F, so
the kernel of v is trivial. Therefore, v is injective, hence must be surjective
since it is a map from a finite group to itself. In particular, every element of
F, has a unique cube root in F,.

For each y € F,, there is exactly one z € F, such that (z,y) lies on the
curve, namely,  is the unique cube root of y> — B. Since there are ¢ values
of y, we obtain ¢ points. Including the point co yields

#E(Fq) =q+ 1L
Therefore, F is supersingular. |

Later (Theorem 4.34), we’ll see how to obtain all supersingular elliptic
curves over an algebraically closed field.
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An attractive feature of supersingular curves is that computations involving
an integer times a point can sometimes be done faster than might be expected.
Suppose E is a supersingular elliptic curve defined over F, and let P = (z,y)
be a point in E(F ) for some n > 1. Usually n is large. Let k be a positive
integer. We want to compute £P. This can be done quickly by successive
doubling, but it is possible to do even better. Let’s assume that a = 0. Then

$g+q=0

by Theorem 4.10. Therefore
2 2
Q(iﬁ',y) = —Qb?](%,y) = (xq ’_yq ) .

The calculations of ¢ and qu involve finite field arithmetic, which is gener-
ally faster than elliptic curve calculations. Moreover, if x and y are expressed
in terms of a normal basis of F,» over F,, then 27 and yq2 are computed by
shift operations (see Appendix C). The procedure is now as follows:

1. Expand £ in base ¢:
k=ko+kiqg+koq® + -+ krq,
with 0 < k; < q.

2. Compute k; P = (x;,y;) for each i.

21 . 21

3. Compute ¢'k; P = (zf ,(-1)'y! ).
4. Sum the points ¢°k; P for 0 < i < r.

The main savings is in step (3), where elliptic curve calculations are replaced
by finite field computations.

We now show how to obtain all supersingular curves over Fq. Note that
supersingularity means that there are no points of order p with coordinates
in the algebraic closure; hence, it is really a property of an elliptic curve over
an algebraically closed field. If we have two elliptic curves F; and E5 defined
over a field such that E; can be transformed into E5 by a change of variables
defined over some extension field, then F; is supersingular if and only if E5
is supersingular.

For example, in Proposition 4.33, the curve y7 = a3 + B can be changed
into y3 = 25 + 1 via 29 = xl/Bl/3, Yo = yl/Bl/z. Therefore, it would have
sufficed to prove the proposition for the curve y? = 23 + 1.

Recall (Section 2.5.1) that an elliptic curve E over an algebraically closed

field of characteristic not 2 can be put into the Legendre form y? = x(x —
1)(z — A) with A #0, 1.
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THEOREM 4.34
Let p be an odd prim e. D efine the polynom ial

Hy(T) = (pi/z ((p R 2)2Ti.

- 1
1=0

T he elliptic curve F given by 4% = x(x—1)(z—\) with A € F,, is supersingular
if and only if H,(A) = 0.

PROOF Since F, = U,>1Fpn, we have A € F, = F,n for some n. So F is
defined over F,. To determine supersingularity, it suffices to count points in
E(F,), by Proposition 4.31. We know (Exercise 4.4) that

L) (e-1)/2
(£,) =

in F,. Therefore, by Theorem 4.14,

#HE(F) =q+1+ Y (ale—1)(z— )"V,

where this is now an equality in F;,. The integers in this formula are regarded
as elements of F,, C F,. The following lemma allows us to simplify the sum.

LEMMA 4.35
Let? > 0 be an Integer. Then

in_ 0 ifq—lfi
-1 iEgq-—1).

z€F,

PROOF  If ¢ — 1]i then ' = 1 for all nonzero x, so the sum equals ¢ — 1,
which equals —1 in F,. The group F is cyclic of order ¢ — 1. Let g be a
generator. Then every nonzero element of F, can be written in the form g’
with 0 < j < ¢ — 2. Therefore, if ¢ — 1174,

q— 2

in:0+ Z xi:Z(gj)i:ZO(gi)j:(gZ;j_—_l_le’

q—
reF, z€FS J=0 Jj=

since g¢=1 =1. |
Expand (z(z — 1)(z — X))(@~Y/2 into a polynomial of degree 3(q — 1)/2.

There is no constant term, so the only term z* with ¢ — 1|i is 2971, Let A,
be the coefficient of 29-!. By the lemma,

Y (zle =@ —A)eH2 =4,

z€Fy
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since all the powers of = except for z9-! sum to 0. Therefore,
#E(F,))=1-A, inF,

By Proposition 4.31, E' is supersingular if and only if A, = 0 in F,. The
following lemma allows us to relate A, to A,.

LEMMA 4.36
Let f(x) = 23 + cox? + c17 + ¢ be a cubic polynom alwith coe cients in a
field of characteristic p. Foreach r > 1, ket A, ke the coe cientofz? ~!
f(z)®"=D/2  Then

Ay = A11)+p+p2+-~-+p’”_1_

PROOF We have

r

(f(z)P=D/2yp" = (3= 1/2 L g P )P
— g3=1p"/2 L oy Agrxﬂ(p—l) 4.

Therefore,

pT

F@) P02 2 ()@ D)2 ( f(x)@—l)/z)
= (x3(pr_1)/2 + .o _|_ Aprxpr_l _|_ . )
.(x3(p—1)pr/2 o Agxpr(p—l) +--0).

To obtain the coefficient of :cprﬂ_l, choose indices ¢ and j with ¢ + j =
p"tt — 1, multiply the corresponding coefficients from the first and second
factors in the above product, and sum over all such pairs ¢,7. A term with
0 <i<3(p"—1)/2 from the first factor requires a term with

. 3
P =1z (" )=S0 - 1) > (p-2)p"

from the second factor. Since all of the exponents in the second factor are
multiples of p”, the only index j in this range that has a nonzero exponent
is j = (p — 1)p". The corresponding index ¢ is p” — 1. The product of the
coefficients yields

A

_ "
p'r+1 — AprAp .

The formula of the lemma is trivially true for » = 1. It now follows by an
easy induction for all r.

From the lemma, we now see that E is supersingular if and only if A, = 0.

This is significant progress, since A, depends on p but not on which power of
p is used to get q.
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It remains to express A, as a polynomial in X\. The coefficient A, of P!
in (z(x — 1)(x — \))®~Y/2 is the coefficient of 2(P~1)/2 in

((z = 1)(z — X))~V

By the binomial theorem,

(z — 1)(p—1)/2 — Z ((p —il)/2> xz‘(_l)(p—l)/%i

(z— N2 = 3 ((P —_1)/2> 2=/ (_\)i.

; J

The coefficient A, of z~1/2 in (z — 1)P=D/2(z — \)P=1)/2 j5

(p—1)/2 2
(_1)(p—1)/2 Z ((p - 1)/2> )\k _ (_1)(p—1)/2Hp()\).

k
k=0

Therefore, E is supersingular if and only if H,(A) = 0. This completes the
proof of Theorem 4.34. |

It is possible to use the method of the preceding proof to determine when
certain curves are supersingular.

PROPOSITION 4.37

Letp > 5 be prime. Then the elliptic curve y* = z° + 1 over F,, is supersin-
qubr ifand only ifp = 2 (mod 3), and the elliptic curve y? = 23 +x over F,,
is supersingular if and only ifp = 3 (mod 4).

PROOF  The coefficient of 2P~! in (23 4+ 1)P~1/2 is 0 if p = 2 (mod 3)
(since we only get exponents that are multiples of 3), and is (Eg :Bg) *

0 (mod p) when p = 1 (mod 3) (since the binomial coefficient contains no
factors of p). Since the coefficient of 2P~ is zero mod p if and only if the
curve is supersingular, this proves the first part.

The coefficient of zP~! in (2 + z)P~1)/2 is the coefficient of z(P~1/2 in
(2 + 1)P=1/2 All exponents appearing in this last expression are even,
so £(P=1/2 doesn’t appear when p = 3 (mod 4). When p = 1 (mod 4),

the coefficient is (g :‘Bﬁ) # 0 (mod p). This proves the second part of the

proposition.

If F is an elliptic curve defined over Z with complex multiplication (see
Chapter 10) by a subring of Q(v/—d), and p is an odd prime number not
dividing d for which F (mod p) is an elliptic curve, then E (mod p) is super-
singular if and only if —d is not a square mod p. Therefore, for such an F,
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the curve E (mod p) is supersingular for approximately half of the primes.
In the proposition, the curve y?> = z® + 1 has complex multiplication by
Z[(1++/=3)/2], and —3 is a square mod p if and only if p=1 (mod 3). The
curve y2 = 23 4+ x has complex multiplication by Z[y/—1], and —1 is a square
mod p if and only if p =1 (mod 4).

If E does not have complex multiplication, the set of primes for which E
(mod p) is supersingular is much more sparse. Elkies [37] proved in 1986
that, for each F, the set of such primes is infinite. Wan [126], improving
on an argument of Serre, showed that, for each ¢ > 0, the number of such
p < z for which E (mod p) is supersingular is less than C.x/In* “(z) for
some constant C¢ depending on €. Since the number of primes less than x
is approximately x/Inx, this shows that substantially less than half of the
primes are supersingular for E. It has been conjectured by Lang and Trotter
that the number of supersingular p is asymptotic to C'v/z/Inz (as x — 00)
for some constant C’ depending on E. This has been shown to be true “on
the average” by Fouvry and Murty [39].

We now change our viewpoint and fix p and count supersingular F over
F,. This essentially amounts to counting distinct zeros of H,(T). The values
A = 0,1 are not allowed in the Legendre form of an elliptic curve. Moreover,
they also don’t appear as zeros of H,(T). It is easy to see that H,(0) = 1.
For H,(1), observe that the coefficient of 2(P~1/2 in

(x4 1P = (z+ 1)(11—1)/2(le + 1)(p—1)/2

<(pp—_1)1/2) - zk: <(p —;)/2) <(p(f 1)2/ ’ k) = Hy(1),

(use the identity (Z) = (nfk)) Since ((pfi_l)lm) contains no factors p, it is

nonzero mod p. Therefore, H,(1) # 0.

18

PROPOSITION 4.38
H,(T) has (p — 1)/2 distnct rots in F,, .

PROOF We claim that
AT(1 = T)H!(T) + 4(1 — 2T)H!(T) — H,(T) =0 (mod p).  (4.5)
Write H,(T) =, by T". The coefficient of T* on the left side of (4.5) is

4(]{: + 1)k‘bk+1 — 4]{7(/{7 — 1)bk + 4(1{1 + 1)bk+1 — 8kbr, — by
= 4(k + 1)%bpy1 — (2k + 1)%by.
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Using the fact that

o = (7 202

k+1

( ((p—1)/2)! )
(k+DH((p = 1)/2) ~ k= 1)!

_ (((p— D/2) —k:)zbk,

kE+1

we find that the coefficient of T* is
(4 ((p—1)/2) = k)* - (2k + 1)2> b =p(p—2—4k)bpy =0 (mod p).

This proves the claim.

Suppose now that H,(\) = 0 with A € F,,. Since H,(0) # 0 and H,(1) # 0,
we have A # 0,1. Write H,(T') = (T'—\)"G(T) for some polynomial G(T") with
G(A\) # 0. Suppose r > 2. In (4.5), we have (T'— \)"~! dividing the last term
and the middle term, but only (T'— A\)"~? divides the term 4T(1 — T)H,/(T).
Since the sum of the three terms is 0, this is impossible, so we must have
r = 1. Therefore, \ is a simple root. (Technical point: Since the degree of
H,(T) is less than p, we have r < p, so the first term of the derivative

H!(T) = r(r — 1)(T = A "2G(T) + 2r(T = \)" ' G(T) + (T — \)"G"(T)

does not disappear in characteristic p. Hence (T'— X)"~! does not divide the
first term of (4.5).) i

REMARK 4.39 The differential equation 4.5 is called a Picard-Fuchs
differential equation. For a discussion of this equation in the study of
families of elliptic curves in characteristic 0, see [24]. Once we know that
H,(T) satisfies this differential equation, the simplicity of the roots follows
from a characteristic p version of the uniqueness theorem for second order
differential equations. If A is a multiple root of H,,(T'), then Hy,(\) = H,()\) =
0. Such a uniqueness theorem would say that H,(7) must be identically 0,
which is a contradiction. Note that we must avoid A = 0,1 because of the
coefficient T'(1 — T') for H,(T).

COROLLARY 4.40 -
Letp > 5 be prine. The number of j € F,, that occur as j-nvardants of
supersingular elliptic curves is

p
{E] * e

where e, =0,1,1,2 ifp =1,5,7,11 (mod 12), respectively.
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PROOF The j-invariant of y?> = z(x — 1)(z — \) is

g(AN2 = A41)°

2
A2\ —1)2

(see Exercise 2.13), so the values of A\ yielding a given j are roots of the
polynomial
Pi(A) =28\ = A+ 1)% —iA2(A - 1)2

The discriminant of this polynomial is 23°(j—1728)34, which is nonzero unless
7 =0 or 1728. Therefore, there are 6 distinct values of \ € Fp corresponding
to each value of j # 0,1728. If one of these \’s is a root of H,(T"), then all
six must be roots, since the corresponding elliptic curves are all the same (up
to changes of variables), and therefore all or none are supersingular.

Since the degree of H,(T) is (p —1)/2, we expect approximately (p —1)/12
supersingular j-invariants, with corrections needed for the cases when at least
one of j =0 or j = 1728 is supersingular.

When j = 0, the polynomial P;()\) becomes 28(A? — X + 1)3, so there are
two values of A that give 5 = 0. When 5 = 1728, the polynomial becomes
28(X — 2)2(A — $)?(A + 1)2, so there are three values of X yielding j = 1728.

A curve with j-invariant 0 can be put into the form y? = 23 4+ 1 over an
algebraically closed field. Theorem 4.34 therefore tells us that when p = 2
(mod 3), the two A’s yielding j = 0 are roots of H,(T"). Similarly, when p = 3
(mod 4), the three X yielding j = 1728 are roots of H,(T).

Putting everything together, the total count of roots of H,(T) is

6 - #{supersingular j # 0, 1728} + 2d5(3) + 3d3(4)
=deg H,(T) = (p— 1)/2,
where 6;;y = 1if p =1 (mod j) and = 0 otherwise.
Suppose that p =5 (mod 12). Then 653y = 1 and d3(4) = 0, so the number
of supersingular j # 0, 1728 is
p—1 1 [p]
12 3 L2l

Adding 1 for the case 7 = 0 yields the number given in the proposition. The
other cases of p (mod 12) are similar.

Example 4.14
When p = 23, we have
Ho3(T) = (T — 3)(T — 8)(T — 21)(T — 11)(T — 13)(T — 16)
(T —2)(T — 12)(T + 1)(T* =T + 1)
(this is a factorization over Fa3). The first 6 factors correspond to
1 1 AoA—-1

A=, 1= A
Uk e L w4
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with A = 3, hence to the curve y* = z(z — 1)(x — 3). The next three factors
correspond to j = 1728, hence to the curve y? = 23 + z. The last factor
corresponds to j = 0, hence to y?> = 22 + 1. Therefore, we have found the
three supersingular curves over Fo3. Of course, over Fa3, there are different
forms of these curves. For example, 2 = 23 + 1 and y? = 23 + 2 are different
curves over Fo3, but are the same over Fas.

Example 4.15
When p = 13,

Hy3(T) = (T? + 4T + 9)(T? + 12T + 3)(T* + 7T + 1).

The six roots correspond to one value of j. Since A = —2 + /8 is a root of
the first factor, the corresponding elliptic curve is

> :a:(x—l)(x+2—\/§).
I

The appearance of a square root such as /8 is fairly common. It is possible
to show that a supersingular curve over a perfect field of characteristic p
must have its j-invariant in Fp2 (see [109, Theorem V.3.1]). Therefore, a

supersingular elliptic curve over F, can always be transformed via a change
of variables (over F,) into a curve defined over F 2.

Exercises
4.1 Let E be the elliptic curve y? = 23 + 2z + 1 (mod 5).

(a) Show that 3(0,1) = (2,1) on E.

(b) Show that (0,1) generates E(F5). (Use the fact that E(F5) has
order 9 (see Example 4.1), plus the fact that the order of any
element of a group divides the order of the group.)

4.2 Let E be the elliptic curve y? +y = 23 over Fy. Show that

2" 4+1 ifnisodd
#E(an) = {2n 11— 2(_2)”/2 if n is even.

4.3 Let F be a finite field with g odd. Since F is cyclic of even order ¢ —1,
half of the elements of F are squares and half are nonsquares.
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(a) Let u € F,. Show that

> (%)=

zcF,

(b) Let f(x) = (z —r)?(x — s), where r, s € F, with ¢ odd. Show that

%) ()

(Hint: If 2 # 7, then (z —7)?(x — s) is a square exactly when x — s
is a square.)

4.4 Let z € F,; with ¢ odd. Show that

T
) = (g 1)/2
(%) -

as elements of F,. (Remark: Since the exponentiation on the right
can be done quickly, for example, by successive squaring (this is the
multiplicative version of the successive doubling in Section 2.2), this
shows that the generalized Legendre symbol can be calculated quickly.
Of course, the classical Legendre symbol can also be calculated quickly
using quadratic reciprocity.)

4.5 Let p=1 (mod 4) be prime and let E be given by y? = 23 — kx, where
k # 0 (mod p).

(a) Use Theorem 4.23 to show that #E(F,) is a multiple of 4 when k
is a square mod p.

(b) Show that when k is a square mod p, then E(F,) contains 4 points
P satisfying 2P = oco. Conclude again that #E(F,) is a multiple
of 4.

(c) Show that when k is not a square mod p, then E(F,) contains no
points of order 4.

(d) Let k be a square but not a fourth power mod p. Show that exactly
one of the curves y? = 23 —z and y? = 23 — kz has a point of order
4 defined over F,,.

4.6 Let E be an elliptic curve over F, and suppose
EF,) ~Z, D Z,.

(a) Use the techniques of the proof of Proposition 4.16 to show that
g = mn? + kn + 1 for some integer k.
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(b) Use Hasse’s theorem in the form a? < 4q to show that |k| < 2v/m.
Therefore, if m is fixed, g occurs as the value of one of finitely many
quadratic polynomials.

(c) The prime number theorem implies that the number of prime pow-
ers less than x is approximately =/ Inz. Use this to show that most
prime powers do not occur as values of the finite list of polynomials

in (b).
(d) Use Hasse’s theorem to show that mn > /m(\/q — 1).

(e) Show that if m > 17 and ¢ is sufficiently large (¢ > 1122 suffices),
then E(F,) has a point of order greater than 4,/q.

(f) Show that for most values of ¢, an elliptic curve over F, has a point
of order greater than 4,/3.
4.7 (a) Let E be defined by y?+y = 2% +x over Fo. Show that #FE(Fy) =
D.
(b) Let E be defined by y? = 23—z+2 over F3. Show that #F(F3) = 1.

(c) Show that the curves in (a) and (b) are supersingular, but that, in
each case, a = p+1—#E(F,) # 0. This shows that the restriction
to p > 5 is needed in Corollary 4.32.

4.8 Let p > 5 be prime. Use Theorem 4.23 to prove Hasse’s theorem for the
elliptic curve given by y? = 23 — kx over F,,.

4.9 Let E be an elliptic curve over F, with ¢ = p*™. Suppose that #F(F,) =
q+1-2/4q.
(a) Let ¢, be the Frobenius endomorphism. Show that (¢, —p™)? = 0.
(b) Show that ¢, —p™ = 0 (H int: Theorem 2.22).

(c) Show that ¢, acts as the identity on E[p™ — 1], and therefore that
Eme B 1] < E(Fq)-

(d) ShOW that E(Fq) ~ me_l @ me_]_.

4.10 Let E be an elliptic curve over F, with ¢ odd. Write #E(F,) = g+1—a.
Let d € F; and let E(? be the twist of E, as in Exercise 2.23. Show
that

d
HEDF)=q+1— (—) a.
Fy
(H Int: Use Exercise 2.23(c) and Theorem 4.14.)

4.11 Let F, be a finite field of odd characteristic and let a,b € F, with
a # £2b and b # 0. Define the elliptic curve F by

y? = 2% + ax? + b2z,
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(a) Show that the points (b, bv/a + 2b) and (—b, —bv/a — 2b) have or-
der 4.

(b) Show that at least one of a + 2b, a — 2b, a® — 4b? is a square in Fy,.
(c) Show that if a® — 4b* is a square in F,, then F[2] C E(F,).
(d) (Suyama) Show that #E(F,) is a multiple of 4.

)

(e) Let E’ be defined by y'* = 2/ — 2az’® + (a2 — 4b?)2’. Show that
E']2] C E'(F,). Conclude that #E’'(F,) is a multiple of 4.

The curve E’ is isogenous to F via
(«',y") = (y*/a®, y(b* - 2®)/a?)

(see the end of Section 8.6 and also Chapter 12). It can be shown that
this implies that #E(F,) = #E'(F,). This gives another proof of the
result of part (d). The curve E has been used in certain elliptic curve
factorization implementations (see [19]).

4.12 Let p be a prime and let E be a supersingular elliptic curve over the
finite field F,,. Let ¢, be the Frobenius endomorphism. Show that some
power of ¢, is an integer. (Note: This is easy when p > 5. The cases
p =2, 3 can be done by a case-by-case calculation.)

4.13 Let E be an elliptic curve over F,. Show that Hasse’s theorem can be

restated as
FEE,) - Vi <1

4.14 Let E be an elliptic curve over F,. Assume that ¢ = r? for some integer
r. Suppose that #E(F,) = (r — 1)%. Let ¢ = ¢, be the gth power
Frobenius endomorphism.

(a) Show that (¢ —r)> = 0.

(b) Show that ¢ —r = 0. (H int: A nonzero endomorphism is surjective

on E(F,) by Theorem 2.22.)
(c) Show that (r —1)E(F,) =0.
(d) Show that E(F,) ~Z,_1 & Z,_4.

(e) Now suppose E’ is an elliptic curve over F, with #E'(F,) = (r+1)?
(where ¢ = r?). Show that E'(F) ~ Z, 1 & Zy41.
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Chapter 5

The Discrete Logarithm
Problem

Let p be a prime and let a, b be integers that are nonzero mod p. Suppose we
know that there exists an integer k such that

a®*=b (mod p).

The classical discrete logarithm problem is to find k. Since k+ (p — 1) is
also a solution, the answer k should be regarded as being defined mod p — 1,
or mod a divisor d of p — 1 if a® =1 (mod p).

More generally, let G be any group, written multiplicatively for the moment,
and let a,b € G. Suppose we know that a* = b for some integer k. In this
context, the discrete logarithm problem is again to find k. For example, G
could be the multiplicative group F of a finite field. Also, G could be E(F,)
for some elliptic curve, in which case a and b are points on E and we are
trying to find an integer k£ with ka = b.

In Chapter 6, we’ll meet several cryptographic applications of the discrete
logarithm problem. The security of the cryptosystems will depend on the
difficulty of solving the discrete log problem.

One way of attacking a discrete log problem is simple brute force: try all
possible values of k until one works. This is impractical when the answer k
can be an integer of several hundred digits, which is a typical size used in
cryptography. Therefore, better techniques are needed.

In this chapter, we start by discussing an attack, called the index calculus,
that can be used in F 7, and more generally in the multiplicative group of a
finite field. However, it does not apply to general groups. Then we discuss the
method of Pohlig-Hellman, the baby step, giant step method, and Pollard’s p
and A methods. These work for general finite groups, in particular for elliptic
curves. Finally, we show that for special classes of elliptic curves, namely
supersingular and anomalous curves, it is possible to reduce the discrete log
problem to easier discrete log problems (in the multiplicative group of a finite
field and in the additive group of integers mod a prime, respectively).

143
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5.1 The Index Calculus

Let p be a prime and let g be primitive root (see Appendix A) mod p,
which means that g is a generator for the cyclic group F,'. In other words,

every h #Z 0 (mod p) can be written in the form h = ¢g* for some integer k
that is uniquely determined mod p — 1. Let k = L(h) denote the discrete
logarithm of h with respect to g and p, so

g"" =h (mod p).
Suppose we have hi and ho. Then
ghhiha) = oy = gEB)+L(2) (104 p),
which implies that
L(hihe) = L(hy) + L(h2) (mod p —1).

Therefore, L changes multiplication into addition, just like the classical loga-
rithm function.

The index calculus is a method for computing values of the discrete log
function L. The idea is to compute L(¢) for several small primes ¢, then use
this information to compute L(h) for arbitrary h. It is easiest to describe the
method with an example.

Example 5.1

Let p = 1217 and ¢ = 3. We want to solve 3*¥ = 37 (mod 1217). Most
of our work will be precomputation that will be independent of the number
37. Let’s choose a set of small primes, called the factor base, to be B =
{2,3,5,7,11,13}. First, we find relations of the form

3¥ = £product of some primes in B (mod 1217).
Eventually, we find the following:

3'=3  (mod 1217)

324 = _92.7.13
3% = 5°

330 = _92.52
354 = _5.11
387 =13

These can be changed into equations for discrete logs, where now the congru-
ences are all mod p—1 = 1216. Note that we already know that 3(?=1/2 = —1
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(mod p), so L(—1) = 608.

1=L(3) (mod 1216)
24 = 608 + 2L(2) 4+ L(7) + L(13)
25 = 3L(5)
30 = 608 + L(2) 4 2L(5)
54 = 608 + L(5) 4+ L(11)
87 = L(13)

The first equation yields L(3) = 1. The third yields L(5) = 819 (mod 1216).
The sixth yields L(13) = 87. The fourth gives

L(2) =30 — 608 —2-819 = 216 (mod 1216).
The fifth yields L(11) = 54 — 608 — L(5) = 1059. Finally, the second gives
L(7) = 24 — 608 — 2L(2) — L(13) = 113 (mod 1216).

We now know the discrete logs of all the elements of the factor base.

Recall that we want to solve 3¥ = 37 (mod 1216). We compute 37 - 37
(mod p) for several random values of j until we obtain an integer that can be
factored into a product of primes in B. In our case, we find that

316.37=2%.7-11 (mod 1217).
Therefore,
L(37) = 3L(2) + L(7) + L(11) — 16 = 588 (mod 1216),
and 3%88 = 37 (mod 1217). [

The choice of the size of the factor base B is important. If B is too small,
then it will be very hard to find powers of g that factor with primes in B. If B
is too large, it will be easy to find relations, but the linear algebra needed to
solve for the logs of the elements of B will be unwieldy. An example that was
completed in 2001 by A. Joux and R. Lercier used the first 1 million primes
to compute discrete logs mod a 120-digit prime.

There are various methods that produce relations of the form g* = product
of primes in B. A popular one uses the number field sieve. See [58].

The expected running time of the index calculus is approximately a constant
times exp(yv/2Inplnlnp) (see [81, p. 129]), which means that it is a subex-
ponential algorithm. The algorithms in Section 5.2, which are exponential
algorithms, run in time approximately /p = exp(3 Inp). Since v/2Inpnlnp
is much smaller than %ln p for large p, the index calculus is generally much
faster when it can be used.
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Note that the index calculus depends heavily on the fact that integers can
be written as products of primes. An analogue of this is not available for
arbitrary groups.

There is a generalization of the index calculus that works for finite fields,
but it requires some algebraic number theory, so we do not discuss it here.

In Section 13.4, we show how an analogue of the index calculus can be
applied to groups arising from hyperelliptic curves.

5.2 General Attacks on Discrete Logs

In this section, we discuss attacks that work for arbitrary groups. Since our
main focus is elliptic curves, we write our group G additively. Therefore, we
are given P, € G and we are trying to solve kP = @ (we always assume
that k exists). Let N be the order of G. Usually, we assume N is known. For
simplicity, it is usually assumed that P generates G.

5.2.1 Baby Step, Giant Step

This method, developed by D. Shanks [107], requires approximately VN
steps and around /N storage. Therefore it only works well for moderate
sized N. The procedure is as follows.

1. Fix an integer m > \/N and compute mP.
2. Make and store a list of 7P for 0 <4 < m.

3. Compute the points ) — jmP for j = 0,1,---m — 1 until one matches
an element from the stored list.

4. If iP = @Q — jmP, we have Q = kP with k =i+ jm (mod N).

Why does this work? Since m? > N, we may assume the answer k satisfies
0 <k <m?. Write k = kg + mk; with kg =k (mod m) and 0 < kg < m and
let k1 = (k — kg)/m. Then 0 < k; < m. When ¢ = kg and j = k1, we have

Q—klmP: k:P—k:lmP: k()P,

so there is a match.

The point iP is calculated by adding P (a “baby step”) to (i — 1)P. The
point @ — jmP is computed by adding —mP (a “giant step”) to Q — (j —
1)mP. The method was developed by Shanks for computations in algebraic
number theory.
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Note that we did not need to know the exact order N of G. We only
required an upper bound for N. Therefore, for elliptic curves over F,, we
could use this method with m? > ¢+ 1+ 2,/4, by Hasse’s theorem.

A slight improvement of the method can be made for elliptic curves by
computing and storing only the points iP for 0 < ¢ < m/2 and checking
whether Q) — jmP = +iP (see Exercise 5.1).

Example 5.2

Let G = E(Fy4), where E is given by y? = 23 +2x + 1. Let P = (0,1) and
@ = (30,40). By Hasse’s theorem, we know that the order of G is at most 54,
so we let m = 8. The points iP for 1 < < 7 are

(0,1),(1,39),(8,23), (38, 38), (23, 23), (20, 28), (26, 9).
We calculate @Q — jmP for 7 = 0,1,2 and obtain
(30,40), (9,25), (26,9),

at which point we stop since this third point matches 7P. Since j = 2 yielded
the match, we have

(30,40) = (7 +2-8)P = 23P.

Therefore k = 23. D

5.2.2 Pollard’s p and A Methods

A disadvantage of the Baby Step, Giant Step method is that it requires a
lot of storage. Pollard’s p and A methods [87] run in approximately the same
time as Baby Step, Giant Step, but require very little storage. First, we’ll
discuss the p method, then its generalization to the A method.

Let G be a finite group of order N. Choose a function f : G — G that
behaves rather randomly. Then start with a random element Py and compute
the iterations P11 = f(P;). Since G is a finite set, there will be some indices
10 < jo such that P;, = P;,. Then

Pio+l:f(Pi ):f(Pj):Pjo-i-lv

and, similarly, P,y = Pj,+¢ for all £ > 0. Therefore, the sequence P; is
periodic with period jo — ig (or possibly a divisor of jo — ig). The picture
describing this process (see Figure 5.1) looks like the Greek letter p, which
is why it is called Pollard’s p method. If f is a randomly chosen random
function (we’ll not make this precise), then we expect to find a match with jg
at most a constant times v/ N. For an analysis of the running time for various
choices of function f, see [119].
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A naive implementation of the method stores all the points P; until a match
is found. This takes around v/ N storage, which is similar to Baby Step, Giant
Step. However, as R. W. Floyd has pointed out, it is possible to do much better
at the cost of a little more computation. The key idea is that once there is a
match for two indices differing by d, all subsequent indices differing by d will
yield matches. This is just the periodicity mentioned above. Therefore, we
can compute pairs (P;, Py;) for i = 1,2,..., but only keep the current pair;
we don’t store the previous pairs. These can be calculated by the rules

Pi1 = f(F), Py = f(f(Pi))

Suppose © > ip and ¢ is a multiple of d. Then the indices 2¢ and ¢ differ by a
multiple of d and hence yield a match: P; = Py;. Since d < jy and ig < jg, it
follows easily that there is a match for ¢ < jg. Therefore, the number of steps
to find a match is expected to be at most a constant multiple of v/N.

Another method of finding a match is to store only those points P; that
satisfy a certain property (call them “distinguished points”). For example, we
could require the last k bits of the binary representation of the x-coordinate to
be 0. We then store, on the average, one out of every 2¥ points P;. Suppose
there is a match P; = P; but P; is not one of these distinguished points.
We expect P;y, to be a distinguished point for some ¢ with 1 < ¢ < 2F,
approximately. Then Pjy, = P;;,, so we find a match between distinguished
points with only a little more computation.

The problem remains of how to choose a suitable function f. Besides having
f act randomly, we need to be able to extract useful information from a match.
Here is one way of doing this. Divide G into s disjoint subsets S, S2,..., 55
of approximately the same size. A good choice for s seems to be around 20.
Choose 2s random integers a;,b; mod N. Let

Finally, define
flg)=g+M; if gesS,.

The best way to think of f is as giving a random walk in G, with the possible
steps being the elements M;.

Finally, choose random integers ag, by and let Py = agP-+bp(Q be the starting
point for the random walk. While computing the points P;, we also record
how these points are expressed in terms of P and Q. If P; = u; P 4 v;Q and
Pj+1 = Pj + M;, then Pj+1 = (Uj —+ CLl)P —+ (Uj —+ bz)Q, SO (Uj+1,1)j_|_1) =
(uj,vj) + (@i, b;). When we find a match P;, = P;,, then we have

wjo P+ v;,Q = u;y P+ v;,Q, hence (u;, —uj,)P = (vj, — vi,)Q.
If ged(vj, — vi,, N) = d, we have

k= (Ujo - vio)_l(uio - ujo) (mOd N/d)
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Figure 5.1
Pollard’s Rho Method

This gives us d choices for k. Usually, d will be small, so we can try all
possibilities until we have Q = kP.

In cryptographic applications, N is often prime, in which case, d = 1 or
N. If d = N, we have a trivial relation (the coefficients of both P and @ are
multiples of N), so we start over. If d = 1, we obtain k.

Example 5.3

Let G = E(F1093), where E is the elliptic curve given by y? = 23 + 2 + 1.
We'll use s = 3. Let P = (0,1) and @ = (413,959). It can be shown that the
order of P is 1067. We want to find k£ such that kP = ). Let

Py=3P+50Q, My=4P+30Q, M, =9P +17Q, My =19P + 6Q.
Let f: E(F1093) — E(F1p93) be defined by
flz,y) = (z,y) + M; if x=14 (mod 3).

Here the number z is regarded as an integer 0 < z < 1093 and is then reduced
mod 3. For example,

f(Py) = Py + My = (727,589),

since Py = (326,69) and 326 = 2 (mod 3).

We can define f(oo) = oo if we want. However, if we encounter f(oc0), we
have found a relation of the form aP + bQ) = oo and can find k easily (if the
relation isn’t something trivial like 1067P 4 2134Q) = oo). Therefore, we don’t
worry about oo.
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If we compute Py, P, = f(Py), P> = f(P1),..., we obtain

Py = (326,69), P, = (727,589), P, = (560, 365), P3 = (1070, 260),
Py = (473,903), Ps = (1006, 951), Ps = (523,938), ...,
P57 = (895,337), Pss = (1006, 951), Pso = (523,938), ...

Therefore, the sequence starts repeating at Ps; = Psg.
If we keep track of the coefficients of P and @ in the calculations, we find
that
P; =88P +46() and Psg = 685P 4+ 620Q).

Therefore,
00 = Psg — Ps = 597P + 574Q).

Since P has order 1067, we calculate
—57471597 = 499  (mod 1067).

Therefore, () = 499P, so k = 499.
We stored all of the points Py, Py, ..., Pss until we found a match. Instead,
let’s repeat the computation, but compute the pairs (P;, Py;) and store nothing

except the current pair. We then find that for ¢ = 53 there is the match
P53 = P106- This ylelds

620P 4 557CQ) = Ps3 = Pyos = 1217P + 1131Q).

Therefore, 597P + 574() = oo, which yields k = 499, as before. I

Pollard’s A method uses a function f as in the p method, but several
random starting points Po(l), cee PO(T) are used. We then get sequences defined
by

PO = f(PY), 1<t<r, i=01,2, ...

These can be computed by several computers in parallel. Points satisfying
certain conditions are called distinguished and are reported to a central com-
puter. When a match is found among the inputs from the various computers,
we have a relation that should allow us to solve the discrete log problem, as
in the p method. When there is a match between two sequences, these two
sequences will always match from that point on. We only need to look at
distinguished points because distinguished points should occur soon after a
match occurs.

When there are only two random starting points, we have two random
walks. Eventually they will have a point in common, and therefore they will
coincide thereafter. The picture of this process resembles the Greek letter A,
hence the name.

Sometimes the A method is described in terms of kangaroos jumping around
a field (this is the random walk). A variant of the A method with two random
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walks records every 10th point, for example, in the first sequence and then
checks whether the second sequence matches any of these points. In this case,
the first sequence is called a tame kangaroo, and the second is called a wild
kangaroo. The idea is to use the tame kangaroo to catch the wild kangaroo.

The A method is expected to find a match in at most a constant times v N
steps. If it is run in parallel with many starting points, the running time can
be improved significantly.

Finally, we should point out a difference between the baby step, giant step
method and the p and A methods. The baby step, giant step method is de-
terministic, which means that it is guaranteed to finish within the predicted
time of a constant times v/N. On the other hand, the p and A methods are
probabilistic, which means that there is a very high probability that they
will finish within the predicted time, but this is not guaranteed.

5.2.3 The Pohlig-Hellman Method

As before, P,(Q are elements in a group GG and we want to find an integer
k with Q = kP. We also know the order N of P and we know the prime

factorization
NIl
i

of N. The idea of Pohlig-Hellman is to find & (mod ¢;*) for each ¢, then use
the Chinese Remainder theorem to combine these and obtain k& (mod N).

Let g be a prime, and let ¢° be the exact power of ¢ dividing N. Write k
in its base ¢ expansion as

k=ko+kiq+keg®+---

with 0 < k; < ¢q. We'll evaluate k (mod ¢¢) by successively determining
ko,k1,...,ke_1. The procedure is as follows.

1. ComputeT:{j (%P) |O§j§q—1}.

2. Compute %Q. This will be an element kg (%P) of T.

3. If e =1, stop. Otherwise, continue.

4. Let leQ—kop
5. Compute qﬂZQl. This will be an element ky (%P) of T.

6. If e = 2, stop. Otherwise, continue.

7. Suppose we have computed ko, k1,...,k-—1, and Q1,...,Q,_1.
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8. Let Q. =Q,_1 — k,r_lqr—lp.
9. Determine k, such that qr% r =k, (%P).

10. If r = e — 1, stop. Otherwise, return to step (7).

Then
k=ko+kig+ +ke—1¢°"" (mod ¢°).

Why does this work? We have

N N
EQZE(k’o-Fk‘lq-F“')P

N N
:kO?P‘i‘(kl+k52q+"')NP:kOEP7

since NP = oco. Therefore, step (2) finds k. Then

Q1 =Q — koP = (kg + k2g> + -+ ) P,

SO
N N
—Q1= (k1 +kaq+---)—P
q q
N N
Therefore, we find ky. Similarly, the method produces ko, k3,.... We have

to stop after r = e — 1 since N/¢°*! is no longer an integer, and we cannot
multiply Q. by the noninteger N/q°T!. Besides, we do not need to continue
because we now know k mod ¢°.

Example 5.4

Let G = E(Fs599), where E is the elliptic curve given by y? = 23 + 1. Let
P = (60,19) and Q = (277,239). The methods of Section 4.3.3 can be used
to show that P has order N = 600. We want to solve ) = kP for k. The
prime factorization of N is

600 = 23 -3 - 52,

We’ll compute k£ mod 8, mod 3, and mod 25, then recombine to obtain k£ mod
600 (the Chinese Remainder Theorem allows us to do this).
k mod 8. We compute T = {00, (598,0)}. Since

(N/2)Q = 00 =0 (gP> ,
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we have ky = 0. Therefore,
Q1=Q—-0P=Q.
Since (N/4)Q1 = 150Q; = (598,0) = 1- £ P, we have k; = 1. Therefore,
Qo= Q1 —1-2. P =(35,243).
Since (N/8)Q2 = 75Q2 = 0o = 0+ & P, we have ks = 0. Therefore,
k=0+1-240-44+---=2 (mod 8).
k mod 3. We have T' = {0, (0,1), (0,598)}. Since
(N/3)Q = (0,598) = 2. gp,
we have ky = 2. Therefore,
k=2 (mod 3).
k mod 25. We have
T = {o0, (84,179), (491, 134), (491, 465), (84, 420)}.
Since (N/5)Q = (84,179), we have kg = 1. Then
Q1 =Q—1-P=(130,129).
Since (N/25)Q1 = (491,465), we have ky = 3. Therefore,
k=1+3-5+---=16 (mod 25).

We now have the simultaneous congruences

r= 2 (mod 8)
x= 2 (mod 3)
x =16 (mod 25)

These combine to yield k = 266 (mod 600), so k = 266. [

The Pohlig-Hellman method works well if all of the prime numbers dividing
N are small. However, if ¢ is a large prime dividing N, then it is difficult to
list the elements of T, which contains ¢ elements. We could try to find the k;
without listing the elements; however, finding k; is a discrete log problem in
the group generated by (IN/q)P, which has order g. If g is of the same order of
magnitude as N (for example, ¢ = N or ¢ = N/2), then the Pohlig-Hellman
method is of little use. For this reason, if a cryptographic system is based on
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discrete logs, the order of the group should be chosen so it contains a large
prime factor.

If N contains some small prime factors, then the Pohlig-Hellman method
can be used to obtain partial information on the value of k, namely a congru-
ence modulo a product of these small prime factors. In certain cryptographic
situations, this could be undesirable. Therefore, the group G is often chosen
to be of large prime order. This can be accomplished by starting with a group
that has a large prime ¢ in its order. Pick a random point P, and compute
its order. With high probability (at least 1 — 1/¢; cf. Remark 5.2), the order
of P; is divisible by ¢, so in a few tries, we can find such a point P;. Write
the order of P; as ¢gm. Then P = mP; will have order ¢q. As long as ¢ is
sufficiently large, discrete log problems in the cyclic group generated by P
will resist the Pohlig-Hellman attack.

5.3 Attacks with Pairings

One strategy for attacking a discrete logarithm problem is to reduce it to an
easier discrete logarithm problem. This can often be done with pairings such
as the Weil pairing or the Tate-Lichtenbaum pairing, which reduce a discrete
logarithm problem on an elliptic curve to one in the multiplicative group of a
finite field.

5.3.1 The MOV Attack

The MOV attack, named after Menezes, Okamoto, and Vanstone [80], uses
the Weil pairing to convert a discrete log problem in E(F,) to one in F ..
Since discrete log problems in finite fields can be attacked by index calculus
methods, they can be solved faster than elliptic curve discrete log problems, as
long as the field F = is not much larger than F,. For supersingular curves, we
can usually take m = 2, so discrete logarithms can be computed more easily
for these curves than for arbitrary elliptic curves. This is unfortunate from a
cryptographic standpoint since an attractive feature of supersingular curves
is that calculations can often be done quickly on them (see Section 4.6).

Recall that for an elliptic curve E defined over F,, we let E[N| denote the
set of points of order dividing N with coordinates in the algebraic closure. If
ged(q, N) =1 and S, T € E[N], then the Weil pairing e (S, T) is an Nth root
of unity and can be computed fairly quickly. The pairing is bilinear, and if
{S,T} is a basis for E[N], then ey (S,T) is a primitive Nth root of unity. For
any S, en(5,S) = 1. For more properties of the Weil pairing, see Sections 3.3
and 11.2.
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Let E be an elliptic curve over F,,. Let P,Q € E(F;). Let N be the order
of P. Assume that

ged(N, q) = 1.
We want to find k£ such that Q = kP. First, it’s worthwhile to check that &
exists.
LEMMA 5.1
T here exists k such that () = kP ifand only if N() = oo and the W eil paring
6N(‘Pa Q) =1.

PROOF If Q = kP, then NQ = kNP = co. Also,
en(P,Q) =en(P,P)F =1% = 1.

Conversely, if NQ = oo, then Q € E[N]. Since gcd(N,q) = 1, we have
E[N| ~Zy & Zy, by Theorem 3.2. Choose a point R such that {P, R} is a
basis of E[N]. Then

Q =aP + bR

for some integers a,b. By Corollary 3.10, en (P, R) = ( is a primitive Nth
root of unity. Therefore, if ex (P, Q) = 1, we have

1 =en(P,Q) =en(P,P)%n(P,R)" = ¢’

This implies that b = 0 (mod N), so bR = co. Therefore, ) = aP, as desired.
i

The idea used to prove the lemma yields the MOV attack on discrete logs
for elliptic curves. Choose m so that

E[N] C E(Fyn).

Since all the points of E[N] have coordinates in F; = Uj>1F;, such an m
exists. By Corollary 3.11, the group un of Nth roots of unity is contained in
F,m. All of our calculations will be done in F m. The algorithm is as follows.

1. Choose a random point 7' € E(Fym).
2. Compute the order M of T.

3. Let d = ged(M, N), and let Ty = (M/d)T. Then T; has order d, which
divides N, so Ty € E[N].

4. Compute (1 = en(P,T1) and (3 = en(Q,T1). Then both (; and (s are
in pg € Fom.

5. Solve the discrete log problem ¢, = (¥ in F;m. This will give & (mod d).
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6. Repeat with random points 7" until the least common multiple of the
various d’s obtained is N. This determines k£ (mod N).

REMARK 5.2 At first, it might seem that d = 1 will occur very often.
However, the opposite is true because of the structure of E(F,=). Recall that

EFgm)~Z,, &7y,

for some integers ny,ny with ni|ns (possibly, ny = 1, in which case the group
is cyclic). Then N|ng, since ns is the largest possible order of an element
of the group. Let By, By be points of orders ni,ns, respectively, such that
B, By generate E(Fym). Then T' = a1 By + a2 Bs. Let (¢ be a prime power
dividing N. Then ¢f|ny with f > e. If £{ ay, then ¢/ divides M, the order of
T. Therefore, ¢¢|d = ged(M, N). Since the probability that £t ag is 1 —1/¢,
the probability is at least this high that the full power ¢¢ is in d. After a few
choices of T, this should be the case. (Note that our probability estimates
are low, since we never included the possible contribution of the a; By term.)

Therefore, a few iterations of the algorithm should yield k. i

Potentially, the integer m could be large, in which case the discrete log
problem in the group qum, which has order ¢™ — 1, is just as hard as the
original discrete log problem in the smaller group E(F,), which has order
approximately ¢, by Hasse’s theorem. However, for supersingular curves, we
can usually take m = 2, as the next result shows.

Let E be an elliptic curve over F,, where ¢ is a power of the prime number
p. Then

#E(Fq)ZQ+1_a

for some integer a. The curve E is called supersingular if a = 0 (mod p).
Corollary 4.32 says that this is equivalent to a = 0 when ¢ = p > 5.

PROPOSITION 5.3

Let E ke an elliptic curve over F; and suppose @ = g+ 1 — #E(F,;) = 0. Let
N be a positive Integer. If there exists a point P € E(F,) of order N, then
EIN]|C E(Fp).

PROOF The Frobenius endomorphism ¢, satisfies gbg —a¢,+q = 0. Since
a = 0, this reduces to

2 __
¢q__Q'

Let S € E[N]. Since #E(F,;) = ¢+ 1, and since there exists a point of order
N, we have N|g+ 1, or —¢ =1 (mod N). Therefore

$2(S) = —q¢S=1-85.
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By Lemma 4.5, S € E(F ;2), as claimed. |

Therefore, discrete log problems over F, for supersingular curves with a = 0
can be reduced to discrete log calculations in FqXQ. These are much easier.

When F is supersingular but a # 0, the above ideas work, but possibly
m = 3, 4, or 6 (see [80] and Exercise 5.12). This is still small enough to speed
up discrete log computations.

5.3.2 The Frey-Riick Attack

Frey and Riick showed that in some situations, the Tate-Lichtenbaum pair-
ing 7,, can be used to solve discrete logarithm problems (see [41] and also
[40]). First, we need the following.

LEMMA 5.4
Let / ke a prine with fjg — 1, {|#E(F,), and ¢* { #FE(F,). Let P ke a
generator of E(F,)[¢]. Then 7¢(P, P) is a prin itive {th root of unity.

PROOF If 7y(P,P) = 1, then 7y(uP,P) = 1* = 1 for all u € Z. Since
70 is nondegenerate, P € (E(F,). Write P = ¢P,. Then (2P, = (P = oo.
Since 2 ¥ #E(F,), there are no points of order £2. Therefore P; must have
order 1 or £. In particular, P = ¢P; = oo, which is a contradiction. Therefore
T¢(P, P) # 1, so it must be a primitive ¢th root of unity. |

Let E(F,) and P be as in the lemma, and suppose ) = kP. Compute
(P, Q) = 74(P, P)*.

Since 74(P, P) is a primitive ¢th root of unity, this determines k£ (mod ¢). We
have therefore reduced the discrete log problem to one in the multiplicative
group of the finite field F,. Such discrete log problems are usually easier to
solve.

Therefore, to choose a situation where the discrete log problem is hard, we
should choose a situation where there is a point of order ¢, where / is a large
prime, and such that ¢ { ¢—1. In fact, we should arrange that ¢" #Z 1 (mod /)
for small values of m.

Suppose E(F,) has a point of order n, but n { ¢ — 1. We can extend our
field to Fym so that n|¢™ — 1. Then the Tate-Lichtenbaum pairing can be
used. However, the following proposition from [9] shows, at least in the case
n is prime, that the Weil pairing also can be used.

PROPOSITION 5.5
Let E ke an elliptic curve over F,. Let { ke a prine such that {|#E(F,),
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El]Z E(F;),and {1 q(qg—1). Then
Elf) C E(Fym) ifand only if¢™ =1 (mod ¢).
PROOF IfE[(] C E(Fym), then py C Fym by Corollary 3.11, hence ¢™ =1
(mod ?).

Conversely, suppose ¢™ =1 (mod ¢). Let P € E(F,) have order ¢ and let
Q € E[{] with Q ¢ E(F,). We claim that P and () are independent points of
order ¢. If not, then uP = v(@ for some integers u,v Z 0 (mod ¢). Multiplying
by v~! (mod £), we find that @ = v~'uP € FE(F,), which is a contradiction.
Therefore { P, Q} is a basis for E[/].

Let ¢, be the Frobenius map. The action of ¢, on the basis {P,Q} of

E[(] gives us a matrix (¢g4)¢, as in Section 3.1. Since P € E(F,), we have
¢q(P) = P. Let ¢4(Q) = bP + dQ. Then

(¢q)e = ((1) Z) :

From Theorem 4.10, we know that
Trace((¢q)e) =a=q+1—#E(F,) (mod ?).
Since #E(F,;) =0 (mod ¢) by assumption, we have
l+d=gq+1 (mod/¥),

so d = q (mod ¢). An easy induction shows that

1o\™ (1=t
= q .
0gq 0 g™

Since ¢ Z 1 (mod /), by assumption, we have
¢y =1l on E[f] <= (¢q)7" =1 (mod {) <= ¢ =1 (mod /).

Since E[¢] C E(F,n) if and only if ¢;* = 1 on E[/], by Lemma 4.5, this proves
the proposition. |

If we have E[n| C E(F,m), then we can use the MOV attack or we can
use the Tate-Lichtenbaum pairing to reduce discrete log problems in E(F  m )
to discrete log problems in F... The Tate-Lichtenbaum pairing is generally
faster (see [44]). In both cases, we pick arbitrary points R and compute their
pairings with P and kP. With high probability (as in Section 5.3.1), we obtain
k after using only a few values of R.
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5.4 Anomalous Curves

The reason the MOV attack works is that it is possible to use the Weil
pairing. In order to avoid this, it was suggested that elliptic curves F over F|,
with

#E(Fq) =q

be used. Such curves are called anomalous. Unfortunately, the discrete log
problem for the group E(F,) can be solved quickly. However, as we’ll see be-
low, anomalous curves are potentially useful when considered over extensions
of F,, since they permit a speed-up in certain calculations in E(F,).

The Weil pairing is not defined on E[p| (or, if we defined it, it would be
trivial since E[p] is cyclic and also since there are no nontrivial pth roots of
unity in characteristic p; however, see [10] for a way to use a Weil pairing in
this situation). Therefore, it was hoped that this would be a good way to
avoid the MOV attack. However, it turns out that there is a different attack
for anomalous curves that works even faster for these curves than the MOV
attack works for supersingular curves.

In the following, we show how to compute discrete logs in the case ¢ = p.
Procedures for doing this have been developed in [95], [102], and [115]. Similar
ideas work for subgroups of p-power order in E(F,) when ¢ is a power of p
(but in Proposition 5.6 we would need to lift £ to a curve defined over a larger
ring than Z).

Warning: The property of being anomalous depends on the base field.
If E is anomalous over F, it is not necessarily anomalous over any F,» for
n > 2. See Exercises 5.5 and 5.6. This is in contrast to supersingularity,
which is independent of the base field and is really a property of the curve
over the algebraic closure (since supersingular means that there are no points
of order p with coordinates in the algebraic closure of the base field).

The first thing we need to do is lift the curve F and the points P, Q to an
elliptic curve over Z.

PROPOSITION 5.6

Let E ke an elliptic curve over F,, and kt P,Q) € E(F,). We assume
E is n W elerstass om y? = 2% + Az + B. Then there exist integers
A,B,xl,xg,yl,yg and an elliptic curve E given by

2 x3+/~1x+l§

<
I
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PROOF  Choose integers x1 and x5 such that 1,25 (mod p) give the z-
coordinates of P,Q. First, assume that z; # w2 (mod p). Choose an integer
y1 such that P = (z1,y;) reduces to P mod p. Now choose ys such that

ys =y? (mod xy — 1) and (x9,72) =Q (mod p).

This is possible by the Chinese Remainder Theorem, since ged(p, zo —x1) = 1
by assumption.
Consider the simultaneous equations

y% = :1:“1’ + /1.7:1 + B
y% :x§+Ax2+B.
We can solve these for A, B:
3 3

2 2
~ Yy =y TS5 — T ~ ~
A=22 1 _ 2 L B——yf—x“;’—Axl.
o — X1 To — X1

Since y% — y% is divisible by x5 — 1, and since x1,T2,¥y1,y2 are integers, it
follows that A, and therefore B, are integers. The points P and @ lie on the
curve E we obtain.

If 21 = x2 (mod p), then P = £@Q. In this case, take 1 = z2. Then
choose y; that reduces mod p to the y-coordinate of P. Choose an integer
A=A (mod p) and let B =y?—1% — Az;. Then P = (z1,y1) lies on E. Let
Q = +P. Then Q reduces to £P = Q mod p.

Finally, 443 +27B% = 443 4+27B% £ 0 (mod p), since F is an elliptic curve.

It follows that 443 4+ 2782 # 0. Therefore F is an elliptic curve. i

REMARK 5.7 If we start with @ = kP for some integer k, it is very
unlikely that this relation still holds on E. In fact, usually P and Q are
independent points. However, if they are dependent, so aP = b(Q for some
nonzero integers a, b, then aP = b(Q), which allows us to find k (unless bP =
o0). The amazing thing about the case of anomalous curves is that even when

P and Q are independent, we can extract enough information to find k. |

Let a/b # 0 be a rational number, where a, b are relatively prime integers.
Write a/b = p"a; /by with p{ajb;. Define the p-adic valuation to be

vp(a/b) = 1.
For example,
v(7/40) = =3, wv5(50/3) =2, wv7(1/2) =0.

Define v,(0) = 400 (so v,(0) > n for every integer n).
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Let E be an elliptic curve over Z given by y? = 23 + Az + B. Let r > 1 be
an integer. Define

E, = {(2,y) € B(Q)|vy(x) < ~2r, v,(y) < ~3r} U oo},

These are the points such that = has at least p?” in its denominator and y
has at least p°” in its denominator. These should be thought of as the points
that are close to oo mod powers of p (that is, p-adically close to co).

THEOREM 5.8 o o
Let F begiven by y? = 2% + Az + B, with A, B € Z. Let p be prin e and kt
r ke a positive Integer. T hen

1. E, is a subgroup of E(Q) .

2. If (x,y) € B(Q), then v,(z) < 0 ifand only ifv,(y) < 0. In this case,
there exists an Integer r > 1 such that v,(x) = —2r, v,(y) = —3r.

3. Themap

A ET/EM — Zpar
(z,y) = p "z/y (mod p*")

oo — 0
is an injective hom om orphism (where Z,.- is a group under addition) .

4. If (z,y) € E, but (z,y) & E,,1, then \,(z,y) Z 0 (mod p).

This will be proved in Section 8.1. The map A, should be regarded as a
logarithm for the group E, / Er+1 since it changes the law of composition in
the group to addition in Z,-, just as the classical logarithm changes the com-
position law in the multiplicative group of positive real numbers to addition
in R.

We need one more fact, which is contained in Corollary 2.33: the reduction
mod p map

red, : E(Q) — E (mod p)

(z,y) = (z,y) (modp) when (z,y) ¢ E
E; — {oo}

is a homomorphism. The kernel of red, is E.

We are now ready for a theoretical version of the algorithm. We start with
an elliptic curve E over F,, in Weierstrass form, and we have points P and
@ on E. We want to find an integer k such that Q = kP (assume k # 0).
The crucial assumption is that £ is anomalous, so #E(F,) = p. Perform the
following steps.
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1. Lift FE, P, to Z to obtain E, }3, @, as in Proposition 5.6.

2. Let P, = pP,Q; = pQ. Note that Py, Q; € E; since redp(pp) =
p - red,(P) = oo (this is where we use the fact that E is anomalous).

3. If ]5~1 € Es, choose new E.P,Q and try again. Otherwise, let {1 =
A1(P1) and V5 = A1(Q1). We have k = {5 /¢ (mod p).

Why does this work? Let K = kP — Q. We have
00 = kP — Q = red, (kP — Q) = red,(K).
Therefore K € Ey, so A\ (K) is defined and
M(pK) =pAi(K) =0 (mod p).
Therefore,
kly — 0y = M (kPy — Q1) = M (kpP — pQ) = M (pK) =0 (mod p).

This means that k = ¢5/¢; (mod p), as claimed.

Note that the assumption that E is anomalous is crucial. If E(F,) has
order IV, we need to multiply by N to put P Q into El, where A\ is defined.
The difference K = kP —Q gets multiplied by N, also. When N is a multiple
of p, we have A\;(NK) = 0 (mod p), so the contribution from K disappears
from our calculations.

If we try to implement the above algorithm, we soon encounter difficulties.
If p is a large prime, the point Py, has coordinates whose numerators and
denominators are too large to work with. For example, the numerator and
denominator of the z-coordinate usually have approximately p? digits (see
Section 8.3). However, we are only looking for z/y (mod p). As we shall see,
it suffices to work with numbers mod p?. (It is also possible to use the “dual
numbers” F,[e], where €2 = 0; see [10].)

Let’s try calculating on £ (mod p?). When we compute (z,y) = P, = pP,
we run into problems. Since P, € EQ, we have p? in the denominator of z, so
P is already at oo mod p?. Therefore, we cannot obtain information directly
from calculating A\ (P;). Instead, we calculate (p — 1)P (mod p?), then add
it to P, keeping track of p in denominators.

The procedure is the following.

1. Lift E,P,Q to Z to obtain E, P = (z1,y1), Q@ = (z2,%2), as in Proposi-
tion 5.6.

2. Calculate . .
Py=(p—1)P=(ay) (mod p?).

The rational numbers in the calculation of P, should not have p in their
denominators, so the denominators can be inverted mod p? to obtain
integers x’,1/.
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3. Calculate Q; = (p— 1)Q = (¢”,y") (mod p?).

4. Compute

Yy — y" — o
m =

mlsz/_$7 " __ *
1 x T2

5. If vp(mg) < 0 or vy(my) < 0, then try another E. Otherwise, Q = kP,
where k = my/msy (mod p).

Example 5.5

Let E be the elliptic curve given by y? = 234+108x+4 over Fgs3. Let P = (0, 2)
and @ = (563, 755). It can be shown that 853P = oco. Since 853 is prime, the
order of P is 853, so 853|#F(Fgs53). Hasse’s theorem implies that #FE(Fgs3) =
853, as in Section 4.3.3. Therefore, F is anomalous. Proposition 5.6 yields

E:y? =22 4+752271504+4, P =(0,2), Q = (563,66436).
We have

P, = 852P = (159511,58855) (mod 853%)
Q2 = 852Q = (256463, 645819) (mod 853%).

Note that even with a prime as small as 853, writing P, without reducing
mod 8533 would require more than 100 thousand digits. We now calculate

58855 — 2 58853 645819 — 66436 58853
my1 = 853 = and mo = 853 =

159511 -0 187 256463 — 563 187 °

Therefore, k = my/my = 234 (mod 853). I

Let’s prove this algorithm works (the proof consists mostly of keeping track
of powers of p, and can be skipped without much loss). The following notation
is useful. We write O(p*) to represent a rational number of the form p*z with
vp(2) > 0. Therefore, if a,b € Z and k > 0, then a = b+ O(p*) simply
means that a = b (mod p¥). But we are allowing rational numbers and we
are allowing negative k. For example,

1 23 .
4—9—%—#0(7 )

since
23 1 13

8 19 7%

The following rule is useful:

a a
FTopH ~ 5 T OW") when () =0, vy(a) 2 0, and k> 0.
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To prove it, simply rewrite the difference ﬁ — ¢. (Technicalpoint: This

actually should say that a/(b+ O(p*)) can be changed to (a/b) + O(p*). The
problem with “=" is that the right side sometimes cannot be changed back
to the left side; for example, let the right side be 0 with a = —p".)

Write P» = (p— 1)P = (u,v), with u,v € Q (this is not yet mod p?). Then
u=1'+0@p*), v=y +00(p*).

Let

Then

B (v—y1)2 B (y’—y1+0(p2)>2
Tr = —UuU—I1 = —Uu—a.

u— T z’ — 1+ O(p?)
We have 151 € El and usually we have Pl ¢ EQ. This means that 2’ — 2

is a multiple of p, but not of p* (note: 3’ # y; (mod p) since otherwise
(p — 1)P = P, which is not the case). We’ll assume this is the case. Then

Y -y +0@p*) 1 (y’ —y1 + 0(192))

¥ —x1+0(p?)  p =5 4 O(p)

1(y -y

- ( :C’—x11 + O(p)>
p P
1 0

=-m1+O0(p")
p

Note that v,(m;) = 0. Since v,(u) > 0 and v,(x1) > 0, we obtain

1 ? 2
x = <Z—?m1 + O(p0)> —u—x = % +O0(p~h).

Similarly, the y-coordinate of P; satisfies

y = —% +0(p™)
Therefore,
= (P = (@) = p 2 = —— 4 O(p) = ——  (mod p).
Y mi mi
Similarly,
f2= (@) =~ (modp)
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If v, (m2) < 0, then @1 S Eg by Theorem 5.8, hence either }31 S Eg or k=0.
We are assuming these cases do not happen, and therefore the congruence
just obtained makes sense. Therefore,

o

=" (mod p),
1 ma

k

as claimed. This shows that the algorithm works.

Anomalous curves are attractive from a computational viewpoint since cal-
culating an integer multiple of a point in E(Fq) can be done efficiently. In
designing a cryptosystem, one therefore starts with an anomalous curve E
over a small finite field F;, and works in E(F ) for a large k. Usually it is
best to work with the subgroup generated by a point whose order £ is a large
prime number. In particular, ¢ will be much larger than p, hence not equal
to p. Therefore, the above attack on anomalous curves does not apply to the
present situation.

Let E be an elliptic curve over F, such that #E(F,) = ¢. Then the trace

of the Frobenius ¢, is a = 1, so

¢g_¢q+q:0-

This means that ¢ = ¢, — qbg. Therefore

q(z,y) = (2% y?) + (22, —y? ) for all (z,y) € E(F,).

The calculation of x4, for example, can be done quickly in a finite field. There-
fore, the expense of multiplying by ¢ is little more than the expense of one
addition of points. The standard method of computing ¢(x, y) (see Section 2.2)
involves more point additions (except when ¢ = 2; but see Exercise 5.8). To
calculate k(x,y) for some integer k, expand k = ko + k1q + k2¢® + - - - in base
q. Compute k; P for each i, then compute ¢‘k; P. Finally, add these together
to obtain kP.

5.5 Other Attacks

For arbitrary elliptic curves, Baby Step/Giant Step and the Pollard p and
A methods seem to be the best algorithms. There are a few cases where index
calculus techniques can be used in the jacobians of higher genus curves to
solve discrete logarithm problems on certain elliptic curves, but it is not clear
how generally their methods apply. See [45], [46], [79]. See also [113] for a
discussion of some other index calculus ideas and elliptic curves.

An interesting approach due to Silverman [112] is called the xedni calcu-
lus. Suppose we want to find k such that Q = kP on a curve E over F,,.
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Proposition 5.6 shows that we can lift F, P, and @ to an elliptic curve E
over Z with points P and Q. If we can find k:’ with Q = k'P, then Q = k'P
However, it is usually the case that P and Q are independent, so no k' ex-
ists. Silverman’s idea was to start with several (up to 9) points of the form
a; P 4+ b;Q) and lift them to a curve over Q. This is possible: Choose a lift
to Z for each of the points. Write down an arbitrary cubic curve containing
lifts of the points. The fact that a point lies on the curve gives a linear equa-
tion in the coefficients of the cubic equation. Use linear algebra to solve for
these coefficients. This curve can then be converted to Weierstrass form (see
Section 2.5.2). Since most curves over Q tend to have at most 2 independent
points, the hope was that there would be relations among the lifted points.
These could then be reduced mod p to obtain relations between P and @, thus
solving the discrete log problem. Unfortunately, the curves obtained tend to
have many independent points and no relations. Certain modifications that
should induce the curve to have fewer independent points do not seem to
work. For an analysis of the algorithm and why it probably is not successful,
see [55].

Exercises

5.1 Suppose G is a subgroup of order N of the points on an elliptic curve over
a field. Show that the following algorithm finds k such that kP = Q:

(a) Fix an integer m > v/N.
(b) Compute and store a list of the z-coordinates of i P for 0 <1i < m/2.

(¢) Compute the points @ — jmP for j = 0,1,2,--- ;m — 1 until the
z-coordinate of one of them matches an element from the stored
list.

(d) Decide whether @ — jmP = iP or = —iP.
(e) If £iP = @ — jmP, we have Q = kP with k = +i+ jm (mod N).
This requires a little less computation and half as much storage as the

baby step, giant step algorithm in the text. It is essentially the same as
the method used in Section 4.3.4 to find the order of E(F,).

5.2 Let G be the additive group Z,. Explain why the discrete logarithm
problem for G means solving ka = b (mod n) for k and describe how
this can be solved quickly. This shows that the difficulty of a discrete
logarithm problem depends on the group.

5.3 Let E be the elliptic curve y? = 23 + 3 over Fy.
(a) Show that 4(1,2) = (4,5) on E.
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(b) Show that the method of the proof of Proposition 5.6, with P = (1, 2)
and Q = (4,5), produces the points P = (1,2) and Q = (4,5) on
E: y? = 2® — 14z 4+ 17 (which is defined over Q).

(¢) Show that 2(1,2) = (1,—2) and 3(1,2) = oo on F mod 73.

(d) Show that there is no integer k such that k(1,2) = (4,5) on E.
This shows that lifting a discrete log problem mod p to one on an elliptic
curve over Q does not necessarily yield a discrete log problem that has
a solution.

5.4 Let G be a group and let p be a prime. Suppose we have a fast algorithm
for solving the discrete log problem for elements of order p (that is,
given g € G of order p and h = g*, there is a fast way to find k). Show
that there is a fast algorithm for solving the discrete log problem for
elements of order a power of p. (This is essentially what the Pohlig-
Hellman method does. Since Pohlig-Hellman works with small primes,
the fast algorithm for elements of order p in this case is simply brute
force search.)

5.5 Let p > 7 be prime. Show that if F is an elliptic curve over F, such
that E(F,) contains a point of order p, then #E(F,) = p.

5.6 Show that if £ is anomalous over F, then it is not anomalous over F .
5.7 Show that if FE is anomalous over F5 then it is anomalous over Fg.

5.8 Suppose E is anomalous over Fa, so ¢3 — ¢ + 2 = 0. Show that

(a) 4=—03 —¢3

(b) 8 =—¢3+¢3

(c) 16 = ¢3 — 5
These equations were discovered by Koblitz [63], who pointed out that
multiplication by each of 2, 4, 8, 16 in E(Q) can be accomplished by
applying suitable powers of ¢o (this is finite field arithmetic and is fast)

and then performing only one point addition. This is faster than suc-
cessive doubling for 4, 8, and 16.

5.9 Let E be defined over F,.

a) Show that a map from E(F,) to itself is injective if and only if it
q
is surjective.

(b) Show that if E(F,) has no point of order n, then E(F,)/nE(F,) =
0 (in which case, the Tate-Lichtenbaum pairing is trivial).

5.10 (a) Let ¢ be a homomorphism from a finite group G to itself. Show
that the index of ¥(G) in G equals the order of the kernel of .
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(b) Let E be defined over F; and let n > 1. Show that E(F,)[n] and
E(F,)/nE(F,) have the same order. (When n|g — 1, this can be
proved from the nondegeneracy of the Tate-Lichtenbaum pairing;
see Lemma 11.28. The point of the present exercise is to prove it
without using this fact.)

5.11 This exercise gives a way to attack discrete logarithms using the Tate-
Lichtenbaum pairing, even when there is a point of order ¢? in E(F,)
(cf. Lemma 5.4). Assume ¢ is a prime such that ¢|#E(F,) and ¢|q — 1,
and suppose that the (-power torsion in E(F,) is cyclic of order ¢, with
i > 1. Let P, have order ¢* and let P have order /.
(a) Show that 74(P, P;) is a primitive th root of unity.

(b) Suppose @ = kP. Show how to use (a) to reduce the problem of
finding k to a discrete logarithm problem in F 7.

(c) Let N = #E(F,;). Let R be a random point in E(F,;). Explain
why (N/#Y)R is very likely to be a point of order ¢!. This shows
that finding a suitable point P; is not difficult.

5.12 Let E be defined by y* +y = 23 + x over Fa. Exercise 4.7 showed that
#FE(Fy) =5, so E is supersingular and ¢3 + 2¢2 + 2 = 0.

(a) Show that ¢3 = —4.
(b) Show that E[5] C E(Fis).
(c) Show that #F(F,) =5 and #E(F16) = 25.

This example shows that Proposition 5.3 can fail when a # 0.
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Chapter

Elliptic Curve Cryptography

In this chapter, we’ll discuss several cryptosystems based on elliptic curves,
especially on the discrete logarithm problem for elliptic curves. We’ll also
treat various related ideas, such as digital signatures.

One might wonder why elliptic curves are used in cryptographic situations.
The reason is that elliptic curves provide security equivalent to classical sys-
tems while using fewer bits. For example, it is estimated in [12] that a key
size of 4096 bits for RSA gives the same level of security as 313 bits in an
elliptic curve system. This means that implementations of elliptic curve cryp-
tosystems require smaller chip size, less power consumption, etc. Daswani and
Boneh [14] performed experiments using 3Com’s PalmPilot, which is a small
hand-held device that is larger than a smart card but smaller than a laptop
computer. They found that generating a 512-bit RSA key took 3.4 minutes,
while generating a 163-bit ECC-DSA key to 0.597 seconds. Though certain
procedures, such as signature verifications, were slightly faster for RSA, the
elliptic curve methods such as ECC-DSA clearly offer great increases in speed
in many situations.

6.1 The Basic Setup

Alice wants to send a message, often called the plaintext, to Bob. In
order to keep the eavesdropper Eve from reading the message, she encrypts
it to obtain the ciphertext. When Bob receives the ciphertext, he decrypts
it and reads the message. In order to encrypt the message, Alice uses an
encryption key. Bob uses a decryption key to decrypt the ciphertext.
Clearly, the decryption key must be kept secret from Eve.

There are two basic types of encryption. In symmetric encryption, the
encryption key and decryption key are the same, or one can be easily deduced
from the other. Popular symmetric encryption methods include the Data
Encryption Standard (DES) and the Advanced Encryption Standard (AES,
often referred to by its original name R ijndael). In this case, Alice and Bob
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need to have some way of establishing a key. For example, Bob could send
a messenger to Alice several days in advance. Then, when it is time to send
the message, they both will have the key. Clearly this is impractical in many
situations.

The other type of encryption is public key encryption, or asymmetric
encryption. In this case, Alice and Bob do not need to have prior contact.
Bob publishes a public encryption key, which Alice uses. He also has a private
decryption key that allows him to decrypt ciphertexts. Since everyone knows
the encryption key, it should be infeasible to deduce the decryption key from
the encryption key. The most famous public key system is known as RSA
and is based on the difficulty of factoring integers into primes. Another well-
known system is due to ElGamal and is based on the difficulty of the discrete
logarithm problem.

Generally, public key systems are slower than good symmetric systems.
Therefore, it is common to use a public key system to establish a key that
is then used in a symmetric system. The improvement in speed is important
when massive amounts of data are being transmitted.

6.2 Diffie-Hellman Key Exchange

Alice and Bob want to agree on a common key that they can use for ex-
changing data via a symmetric encryption scheme such as DES or AES. For
example, Alice and Bob could be banks that want to transmit financial data.
It is impractical and time-consuming to use a courier to deliver the key. More-
over, we assume that Alice and Bob have had no prior contact and therefore
the only communication channels between them are public. One way to estab-
lish a secret key is the following method, due to Diffie and Hellman (actually,
they used multiplicative groups of finite fields).

1. Alice and Bob agree on an elliptic curve E over a finite field F, such
that the discrete logarithm problem is hard in E(F,). They also agree
on a point P € E(F,) such that the subgroup generated by P has large
order (usually, the curve and point are chosen so that the order is a
large prime).

2. Alice chooses a secret integer a, computes P, = aP, and sends P, to
Bob.

3. Bob chooses a secret integer b, computes P, = bP, and sends P, to Alice.
4. Alice computes aP, = abP.

5. Bob computes bP, = baP.

© 2008 by Taylor & Francis Group, LLC



SECTION 6.2 DIFFIE-HELLMAN KEY EXCHANGE 171

6. Alice and Bob use some publicly agreed on method to extract a key from
abP. For example, they could use the last 256 bits of the z-coordinate
of abP as the key. Or they could evaluate a hash function at the x-
coordinate.

The only information that the eavesdropper Eve sees is the curve E, the finite
field F,, and the points P, aP, and bP. She therefore needs to solve the
following:

DIFFIE-HELLMAN PROBLEM
Given P, aP, and bP i E(F,), com pute abP .

If Eve can solve discrete logs in E(F,), then she can use P and aP to find
a. Then she can compute a(bP) to get abP. However, it is not known whether
there is some way to compute abP without first solving a discrete log problem.

A related question is the following:

DECISION DIFFIE-HELLMAN PROBLEM
Given P, aP, and bP n E(F,), and given a point ) € E(F,) determ ine
whether or not ) = abP.

In other words, if Eve receives an anonymous tip telling her abP, can she
verify that the information is correct?

The Diffie-Hellman problem and the Decision Diffie-Hellman problem can
be asked for arbitrary groups. Originally, they appeared in the context of
multiplicative groups F of finite fields.

For elliptic curves, the Weil pairing can be used to solve the Decision Diffie-
Hellman problem in some cases. We give one such example.

Let E be the curve y? = 23 4 1 over F,, where ¢ =2 (mod 3). By Proposi-
tion 4.33, E is supersingular. Let w € F 2 be a primitive third root of unity.
Note that w ¢ F, since the order of F is ¢ — 1, which is not a multiple of 3.
Define a map

B:E(F,) — EF,), (2,y)— (wz,y), B(c0) = oo.

It is straightforward to show, using the formulas for the addition law, that 3
is an isomorphism (Exercise 6.1).

Suppose P € E(F,) has order n. Then 8(P) also has order n. Define the
modified Weil pairing

én(P17P2) - en(Pla/B(P2))7

where e, is the usual Weil pairing and P;, Py € En].
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LEMMA 6.1
Assume3{n. IfP € E(F,) has order exactly n, then é, (P, P) is a prin itive
nth root of unity.

PROOF  Suppose uP = v(3(P) for some integers u,v. Then
B(vP) =vB(P) =uP € E(F,).

If vP = oo, then uP = 00, so u =0 (mod n). If vP # oo, write vP = (z,y)
with z,y € F,. Then

(wz,y) = B(vP) € E(F,).

Since w ¢ F,, we must have z = 0. Therefore vP = (0,+1), which has order
3. This is impossible since we have assumed that 3 1 n. It follows that the
only relation of the form uP = v3(P) has u,v =0 (mod n), so P and ((P)
form a basis of E[n]|. By Corollary 3.10, €, (P, P) = e, (P, 3(P)) is a primitive
nth root of unity.

Suppose now that we know P, aP, bP, () and we want to decide whether or
not () = abP. First, use the usual Weil pairing to decide whether or not @) is a
multiple of P. By Lemma 5.1, @ is a multiple of P if and only if e, (P, Q) = 1.
Assume this is the case, so @ = tP for some t. We have

én(aP,bP) = é,(P,P)®™ = ¢,(P,abP) and &,(Q,P) = é,(P, P)".
Assume 3 1t n. Then €, (P, P) is a primitive nth root of unity, so
Q =abP <= t=ab (modn) <= é,(aP,bP) = ¢é,(Q, P).

This solves the Decision Diffie-Hellman problem in this case. Note that we
did not need to compute any discrete logs, even in finite fields. All that was
needed was to compute the Weil pairing.

The above method was pointed out by Joux and Nguyen. For more on the
Decision Diffie-Hellman problem, see [13].

Joux [56] (see also [124]) has given another application of the modified
Weil pairing to what is known as tripartite Diffie-Hellman key exchange.
Suppose Alice, Bob, and Chris want to establish a common key. The standard
Diffie-Hellman procedure requires two rounds of interaction. The modified
WEeil pairing allows this to be cut to one round. As above, let E be the curve
y*> = 23 + 1 over F,, where ¢ = 2 (mod 3). Let P be a point of order n.
Usually, n should be chosen to be a large prime. Alice, Bob, and Chris do the
following.

1. Alice, Bob, and Chris choose secret integers a, b, c mod n, respectively.

2. Alice broadcasts aP, Bob broadcasts bP, and Chris broadcasts cP.
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3. Alice computes é, (bP, cP)%, Bob computes &, (aP, cP)®, and Chris com-
putes é,(aP,bP)°.

4. Since each of the three users has computed the same number, they use
this number to produce a key, using some publicly prearranged method.

Recall that, since F is supersingular, the discrete log problem on E can be
reduced to a discrete log problem for F’, (see Section 5.3.1). Therefore, g
should be chosen large enough that this discrete log problem is hard.

For more on cryptographic applications of pairings, see [57].

6.3 Massey-Omura Encryption

Alice wants to send a message to Bob over public channels. They have not
yet established a private key. One way to do this is the following. Alice puts
her message in a box and puts her lock on it. She sends the box to Bob. Bob
puts his lock on it and sends it back to Alice. Alice then takes her lock off
and sends the box back to Bob. Bob then removes his lock, opens the box,
and reads the message.

This procedure can be implemented mathematically as follows.

1. Alice and Bob agree on an elliptic curve E over a finite field F, such
that the discrete log problem is hard in E(F). Let N = #E(F,).

2. Alice represents her message as a point M € E(F,). (We’ll discuss how
to do this below.)

3. Alice chooses a secret integer m 4 with ged(ma, N) = 1, computes M; =
maM, and sends M; to Bob.

4. Bob chooses a secret integer mp with ged(mp, N) = 1, computes My =
mpMyi, and sends My to Alice.

5. Alice computes m;ll € Zy. She computes M3 = mZIMg and sends Mg
to Bob.

6. Bob computes mgl € Zy. He computes My = mglMg. Then My = M
is the message.

Let’s show that M, is the original message M. Formally, we have
My = mglmzlmBmAM = M,

but we need to justify the fact that mATl, which is an integer representing
the inverse of my mod N, and m 4 cancel each other. We have mzlmA =1
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(mod N), so my'ma = 1+ kN for some k. The group E(F,) has order N,
so Lagrange’s theorem implies that NR = oo for any R € E(F,). Therefore,

mymaR=(1+kN)R =R+ koo = R.
Applying this to R = mpgM, we find that
My = m;‘lmBmAM =mpM.
Similarly, mgl and mp cancel, so
My =mpz M3 =mzg'mpM = M.

The eavesdropper Eve knows E(F,) and the points ma M, mpmaM, and
mpM. Let a = mzl,b = m]_gl,P =mampM. Then we see that Eve knows
P,bP,aP and wants to find abP. This is the Diffie-Hellman problem (see
Section 6.2).

The above procedure works in any finite group. It seems that the method
is rarely used in practice.

It remains to show how to represent a message as a point on an elliptic curve.
We use a method proposed by Koblitz. Suppose E is an elliptic curve given by
y? = 23+ Ax+ B over F,. The case of an arbitrary finite field F, is similar. Let
m be a message, expressed as a number 0 < m < p/100. Let x; = 100m + j
for 0 < j < 100. For j = 0,1,2,...,99, compute s; = xf +Ax; + B . If

s§p_1)/2 = 1 (mod p), then s; is a square mod p, in which case we do not

need to try any more values of j. When p = 3 (mod 4), a square root of
s; is then given by vy, = s§p+1)/4 (mod p) (see Exercise 6.7). When p = 1
(mod 4), a square root of s; can also be computed, but the procedure is more
complicated (see [25]). We obtain a point (z;,y;) on E. To recover m from
(x,y;), simply compute [z;/100] (= the greatest integer less than or equal
to x;/100). Since s; is essentially a random element of F, which is cyclic of
even order, the probability is approximately 1/2 that s; is a square. So the
probability of not being able to find a point for m after trying 100 values is

around 27100,

6.4 ElGamal Public Key Encryption

Alice wants to send a message to Bob. First, Bob establishes his public
key as follows. He chooses an elliptic curve E over a finite field F, such that
the discrete log problem is hard for E(F,). He also chooses a point P on E
(usually, it is arranged that the order of P is a large prime). He chooses a
secret integer s and computes B = sP. The elliptic curve F, the finite field
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F,, and the points P and B are Bob’s public key. They are made public.
Bob’s private key is the integer s.
To send a message to Bob, Alice does the following:

1. Downloads Bob’s public key.

2. Expresses her message as a point M € E(F,).

3. Chooses a secret random integer k£ and computes M; = kP.
4. Computes My = M + kB.

5. Sends M, M5 to Bob.

Bob decrypts by calculating
M = My — sM;.
This decryption works because
My — sMy = (M + kB) — s(kP) = M + k(sP) — skP = M.

The eavesdropper Eve knows Bob’s public information and the points M;
and Ms. If she can calculate discrete logs, she can use P and B to find s,
which she can then use to decrypt the message as My — sM;. Also, she could
use P and M to find k. Then she can calculate M = My — kB. If she cannot
calculate discrete logs, there does not appear to be a way to find M.

It is important for Alice to use a different random k each time she sends
a message to Bob. Suppose Alice uses the same k for both M and M’. Eve
recognizes this because then M; = M]. She then computes M) — My =
M’ — M. Suppose M is a sales announcement that is made public a day later.
Then Eve finds out M, so she calculates M’ = M — My + M). Therefore,
knowledge of one plaintext M allows Eve to deduce another plaintext M’ in
this case.

The ElGamal Public Key system, in contrast to the ElGamal signature
scheme of the next section, does not appear to be widely used.

6.5 ElGamal Digital Signatures

Alice wants to sign a document. The classical way is to write her signature
on a piece of paper containing the document. Suppose, however, that the
document is electronic, for example, a computer file. The naive solution
would be to digitize Alice’s signature and append it to the file containing the
document. In this case, evil Eve can copy the signature and append it to
another document. Therefore, steps must be taken to tie the signature to
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the document in such a way that it cannot be used again. However, it must
be possible for someone to verify that the signature is valid, and it should
be possible to show that Alice must have been the person who signed the
document. One solution to the problem relies on the difficulty of discrete
logs. Classically, the algorithm was developed for the multiplicative group of
a finite field. In fact, it applies to any finite group. We’ll present it for elliptic
curves.

Alice first must establish a public key. She chooses an elliptic curve E over
a finite field F, such that the discrete log problem is hard for E(F,). She also
chooses a point A € E(F,). Usually the choices are made so that the order
N of A is a large prime. Alice also chooses a secret integer a and computes
B = aA. Finally, she chooses a function

f:E[F,) — Z.

For example, if F, = F,,, then she could use f(z,y) = =, where z is regarded
as an integer, 0 < x < p. The function f needs no special properties, except
that its image should be large and only a small number of inputs should
produce any given output (for example, for f(z,y) = x, at most two points
(z,y) yield a given output x).

Alice’s public information is E, F, f, A, and B. She keeps a private. The
integer N does not need to be made public. Its secrecy does not affect our
analysis of the security of the system. To sign a document, Alice does the
following:

1. Represents the document as an integer m (if m > N, choose a larger
curve, or use a hash function (see below)).

2. Chooses a random integer k with ged(k, N) = 1 and computes R = kA.
3. Computes s = k71 (m —af(R)) (mod N).

The signed message is (m, R, s). Note that m, s are integers, while R is a point
on F. Also, note that Alice is not trying to keep the document m secret. If
she wants to do that, then she needs to use some form of encryption. Bob
verifies the signature as follows:

1. Downloads Alice’s public information.
2. Computes Vi = f(R)B + sR and V, = mA.
3. If V1 = V5, he declares the signature valid.

If the signature is valid, then V; = V5 since
Vi=f(R)B+sR=f(R)aA+ skA = f(R)aA+ (m —af(R))A=mA=1,.

We have used the fact that sk = m — af(R), hence sk = m —af(R) + zN for
some integer z. Therefore,

skA=(m—af(R)A+zNA=(m—af(R))A+occ=(m—af(R))A.
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This is why the congruence defining s was taken mod N.

If Eve can calculate discrete logs, then she can use A and B to find a.
In this case, she can put Alice’s signature on any message. Alternatively,
Eve can use A and R to find k. Since she knows s, f(R), m, she can then
use ks = m — af(R) (mod N) to find a. If d = ged(f(R),N) # 1, then
af(R) = m — ks (mod N) has d solutions for a. As long as d is small, Eve
can try each possibility until she obtains B = aA. Then she can use a, as
before, to forge Alice’s signature on arbitrary messages.

As we just saw, Alice must keep a and k secret. Also, she must use a
different random k for each signature. Suppose she signs m and m’ using the
same k to obtain signed messages (m, R, s) and (m’, R, s’). Eve immediately
recognizes that k has been used twice since R is the same for both signatures.
The equations for s, s’ yield the following:

ks =m—af(R) (mod N)
ks' =m' —af(R) (mod N).

Subtracting yields k(s—s') = m—m’ (mod N). Let d = ged(s—s’, N). There
are d possible values for k. Eve tries each one until R = kA is satisfied. Once
she knows k, she can find a, as above.

It is perhaps not necessary for Eve to solve discrete log problems in order to
forge Alice’s signature on another message m. All Eve needs to do is produce
R, s such that the verification equation V; = V5 is satisfied. This means that
she needs to find R = (z,y) and s such that

f(R)B + sR = mA.

If she chooses some point R (there is no need to choose an integer k), she
needs to solve the discrete log problem sR = mA — f(R)B for the integer s.
If, instead, she chooses s, then she must solve an equation for R = (x,y). This
equation appears to be at least as complex as a discrete log problem, though it
has not been analyzed as thoroughly. Moreover, no one has been able to rule
out the possibility of using some procedure that finds R and s simultaneously.
There are ways of using a valid signed message to produce another valid signed
message (see Exercise 6.2). However, the messages produced are unlikely to
be meaningful messages.

The general belief is that the security of the ElGamal system is very close
to the security of discrete logs for the group E(F).

A disadvantage of the ElGamal system is that the signed message (m, R, s)
is approximately three times as long as the original message (it is not necessary
to store the full y-coordinate of R since there are only two choices for y for
a given z). A more efficient method is to choose a public hash function H
and sign H(m). A cryptographic hash function is a function that takes
inputs of arbitrary length, sometimes a message of billions of bits, and outputs
values of fixed length, for example, 160 bits. A hash function H should have
the following properties:
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1. Given a message m, the value H(m) can be calculated very quickly.

2. Given y, it is computationally infeasible to find m with H(m) = y. (This
says that H is preimage resistant.)

3. It is computationally infeasible to find distinct messages m; and mo
with H(mq) = H(mz). (This says that H is strongly collision-free.)

The reason for (2) and (3) is to prevent Eve from producing messages with
a desired hash value, or two messages with the same hash value. This helps
prevent forgery. There are several popular hash functions available, for exam-
ple, MD5 (due to Rivest; it produces a 128-bit output) and the Secure Hash
Algorithm (from NIST; it produces a 160-bit output). We won’t discuss these
here. For details, see [81]. Recent work of Wang, Yin, and Yu [127] has found
weaknesses in them, so the subject is somewhat in a state of flux.
If Alice uses a hash function, the signed message is then

(ma RH7 SH)7

where (H(m), R, sp) is a valid signature. To verify that the signature
(m, Ry, sy) is valid, Bob does the following:

1. Downloads Alice’s public information.
2. Computes Vi = f(Ry)B + sg Ry and Vo = H(m)A.
3. If V1 = V5, he declares the signature valid.

The advantage is that a very long message m containing billions of bits has a
signature that requires only a few thousand extra bits. As long as the discrete
log problem is hard for E(F,), Eve will be unable to put Alice’s signature on
another message. The use of a hash function also guards against certain other
forgeries (see Exercise 6.2).

A recent variant of the ElGamal signature scheme due to van Duin is very
efficient in certain aspects. For example, it avoids the computation of k7!,
and its verification procedure requires only two computations of an integer
times a point. As before, Alice has a document m that she wants to sign. To
set up the system, she chooses an elliptic curve E over a finite field F, and
a point A € E(F,) of large prime order N. She also chooses a cryptographic
hash function H. She chooses a secret integer a and computes B = aA. The
public information is (E,q, N, H, A, B). The secret information is a. To sign
m, Alice does the following;:

1. Chooses a random integer £k mod N and computes R = kA.

2. Computes t = H(R,m)k + a (mod N).
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The signed document is (m, R, t).
To verify the signature, Bob downloads Alice’s public information and
checks whether

tA=H(R,m)R+ B

is true. If it is, the signature is declared valid; otherwise, it is invalid.

6.6 The Digital Signature Algorithm

The Digital Signature Standard [1],[86] is based on the Digital Signature Al-
gorithm (DSA). The original version used multiplicative groups of finite fields.
A more recent elliptic curve version (ECDSA) uses elliptic curves. The algo-
rithm is a variant on the ElGamal signature scheme, with some modifications.
We sketch the algorithm here.

Alice wants to sign a document m, which is an integer (actually, she usually
signs the hash of the document, as in Section 6.5). Alice chooses an elliptic
curve over a finite field F, such that #E(F,) = fr, where r is a large prime
and f is a small integer, usually 1,2, or 4 (f should be small in order to keep
the algorithm efficient). She chooses a base point G in E(F,) of order r.
Finally, Alice chooses a secret integer a and computes Q = aG. Alice makes
public the following information:

an E7 r, G7 Q

(There is no need to keep f secret; it can be deduced from ¢ and r using
Hasse’s theorem by the technique in Examples 4.6 and 4.7.) To sign the
message m Alice does the following:

1. Chooses a random integer k with 1 < k < r and computes R = kG =
(2, y)-

2. Computes s = k~(m + ax) (mod 7).

The signed document is
(m, R, s).

To verify the signature, Bob does the following.
1. Computes u; = s~ 'm (mod r) and us = s~ 'z (mod r).
2. Computes V = u1G + usQ.

3. Declares the signature valid if V' = R.
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If the message is signed correctly, the verification equation holds:
V=u1G +u@Q =s'mG + s '2Q = s (mG + zaG) = kG = R.

The main difference between the ECDSA and the ElGamal system is the
verification procedure. In the ElGamal system, the verification equation
f(R)B 4 sR = mA requires three computations of an integer times a point.
These are the most expensive parts of the algorithm. In the ECDSA, only two
computations of an integer times a point are needed. If many verifications
are going to be made, then the improved efficiency of the ECDSA is valuable.
This is the same type of improvement as in the van Duin system mentioned
at the end of the previous section.

6.7 ECIES

The Elliptic Curve Integrated Encryption Scheme (ECIES) was invented
by Bellare and Rogaway [2]. It is a public key encryption scheme.

Alice wants to send a message m to Bob. First, Bob establishes his public
key. He chooses an elliptic curve E over a finite field F; such that the discrete
log problem is hard for E(F,), and he chooses a point A on E, usually of large
prime order N. He then chooses a secret integer s and computes B = sA.
The public key is (¢, E, N, A, B). The private key is s.

The algorithm also needs two cryptographic hash functions, H; and H,
and a symmetric encryption function Ej (depending on a key k) that are
publicly agreed upon.

To encrypt and send her message, Alice does the following:

1. Downloads Bob’s public key.
2. Chooses a random integer k£ with 1 < k < N — 1.
3. Computes R = kA and Z = kB.

4. Writes the output of Hi(R,Z) as ki||lke (that is, ky followed by ks),
where k1 and ko have specified lengths.

5. Computes C' = Ey, (m) and t = Hy(C, k2).
6. Sends (R,C,t) to Bob.
To decrypt, Bob does the following:
1. Computes Z = sR, using his knowledge of the secret key s.

2. Computes Hi (R, Z) and writes the output as ki ||k2.
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3. Computes Ho(C, k). If it does not equal ¢, Bob stops and rejects the
ciphertext. Otherwise, he continues.

4. Computes m = Dy, (C), where Dy, is the decryption function for Ej, .

An important feature is the authentication procedure in step (3) of the de-
cryption. In many cryptosystems, an attacker can choose various ciphertexts
and force Bob to decrypt them. These decryptions are used to attack the sys-
tem. In the present system, the attacker can generate ciphertexts by choosing
C and k% and then letting t' = Ho(C, k%). But the attacker does not know Z,
so he cannot use the same value ko that Bob obtains from H; (R, Z). There-
fore, it is very unlikely that ¢ = Ho(C, k}) will equal ¢t = Hy(C, k2). With
very high probability, Bob simply rejects the ciphertext and does not return
a decryption.

In our description of the procedure, we used hash functions for the au-
thentication. There are other message authentication methods that could be
used.

An advantage of ECIES over the Massey-Omura and ElGamal public key
methods is that the message is not represented as a point on the curve. More-
over, since a keyed symmetric method is used to send the message, we do not
need to do a new elliptic curve calculation for each block of the message.

6.8 A Public Key Scheme Based on Factoring

Most cryptosystems using elliptic curves are based on the discrete log prob-
lem, in contrast to the situation for classical systems, which are sometimes
based on discrete logs and sometimes based on the difficulty of factorization.
The most famous public key cryptosystem is called RSA (for Rivest-Shamir-
Adleman) and proceeds as follows. Alice wants to send a message to Bob. Bob
secretly chooses two large primes p, ¢ and multiplies them to obtain n = pq.
Bob also chooses integers e and d with ed =1 (mod (p—1)(¢—1)). He makes
n and e public and keeps d secret. Alice’s message is a number m (mod n).
She computes ¢ = m® (mod n) and sends ¢ to Bob. Bob computes m = ¢?
(mod n) to obtain the message. If Eve can find p and ¢, then she can solve
ed =1 (mod (p—1)(¢—1)) to obtain d. It can be shown (by methods similar
to those used in the elliptic curve scheme below; see [121]) that if Eve can
find the decryption exponent d, then she probably can factor n. Therefore,
the difficulty of factoring n is the key to the security of the RSA system.

A natural question is whether there is an elliptic curve analogue of RSA. In
the following, we present one such system, due to Koyama-Maurer-Okamoto-
Vanstone. It does not seem to be used much in practice.

Alice want to send a message to Bob. They do the following.
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. Bob chooses two distinct large primes p, ¢ with p = ¢ =2 (mod 3) and

computes n = pq.

. Bob chooses integers e, d with ed =1 (mod lem(p+1,g+1)). (He could

use (p+1)(¢ + 1) in place of lem(p+ 1,¢ + 1).)

Bob makes n and e public (they form his public key) and he keeps d, p, ¢
private.

Alice represents her message as a pair of integers (mq,ms) (mod n).
She regards (m1,ms) as a point M on the elliptic curve E given by
y> =2° +b mod n,

where b = m2 —m3 (mod n) (she does not need to compute b).

Alice adds M to itself e times on E to obtain C = (¢1,c2) = eM. She
sends C' to Bob.

Bob computes M = dC on E to obtain M.

We’ll discuss the security of the system shortly. But, first, there are several
points that need to be discussed.

1.

Note that the formulas for the addition law on E never use the value of
b. Therefore, Alice and Bob never need to compute it. Eve can compute
it, if she wants, as b = ¢3 — c3.

The computation of eM and dC on E are carried out with the formulas
for the group law on an elliptic curve, with all of the computations being
done mod n. Several times during the computation, expressions such
as (y2 — y1)/(z2 — x1) are encountered. These are changed to integers
mod n by finding the multiplicative inverse of (xo — x1) mod n. This
requires ged(xo — x1,n) = 1. If the ged is not 1, then it is p, g, or n.
If we assume it is very hard to factor n, then we regard the possibility
of the ged being p or ¢ as very unlikely. If the ged is n, then the slope
is infinite and the sum of the points in question is co. The usual rules
for working with oo are followed. For technical details of working with
elliptic curves mod n, see Section 2.11.

By the Chinese Remainder Theorem, an integer mod n may be regarded
as a pair of integers, one mod p and one mod q. Therefore, we can regard
a point on F in Z, as a pair of points, one on £ mod p and the other
on F mod ¢. In this way, we have

E(Z,) = E(F,) ® E(F,). (6.1)

For example, the point (11,32) on y? = 2% + 8 mod 35 can be regarded
as the pair of points

(1,2) mod b5, (4,4) mod 7.
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Any such pair of points can be combined to obtain a point mod n. There
is a technicality with points at infinity, which is discussed in Section 2.11.

3. Using (6.1), we see that the order of E(Z,) is #E(F,) - #E(F,). By
Proposition 4.33, E' is supersingular mod p and mod ¢, so we find (by
Corollary 4.32) that

#E(F,) =p-+1 and #E(F,) =q+ 1.

Therefore, (p+ 1)M = oo (mod p) and (¢ + 1)M = oo (mod ¢q). This
means that the decryption works: Write de = 1 + k(p + 1) for some
integer k. Then

dC = deM = (14+k(p+1))M = M+k(p+1)M = M+oo =M (mod p),
and similarly mod ¢. Therefore, dC' = M.

4. A key point of the procedure is that the group order is independent
of b. If Bob chooses a random elliptic curve y?> = 3 + Ax + B over
Z,,, then he has to compute the group order, perhaps by computing it
mod p and mod ¢. This is infeasible if p and ¢ are chosen large enough
to make factoring n infeasible. Also, if Bob fixes the elliptic curve,
Alice will have difficulty finding points M on the curve. If she does
the procedure of first choosing the z-coordinate as the message, then
solving y2 = m3+ Am+ B (mod n) for y, she is faced with the problem
of computing square roots mod n. This is computationally equivalent to
factoring n (see [121]). If Bob fixes only A (the formulas for the group
operations depend only on A) and allows Alice to choose B so that her
point lies on the curve, then his choice of e, d requires that the group
order be independent of B. This is the situation in the above procedure.

If Eve factors n as pq, then she knows (p+1)(¢+ 1), so she can find d with
ed=1 (mod (p+1)(¢+1)). Therefore, she can decrypt Alice’s message.

Suppose that Eve does not yet know the factorization of n, but she finds
out the decryption exponent d. We claim that she can, with high probability,
factor n. She does the following:

1. Writes ed—1 = 2y with v odd and with & > 1 (k # 0 since p+1 divides
ed—1).

2. Picks a random pair of integers R = (r1,72) mod n, lets b’ = r3 —r3,

and regards R as a point on the elliptic curve E’ given by y? = 23 + 1'.

3. Computes Ry = vR. If Ry = oo mod n, start over with a new R. If Ry
is 0o mod exactly one of p, g, then Eve has factored n (see below).

4. For1=0,1,2,...,k, computes R;11 = 2R,;.
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5. If for some ¢, the point R;;; is oo mod exactly one of p,q, then R; =
(zi,y;) with y; = 0 mod one of p,q. Therefore, ged(y;,n) = p or ¢q. In
this case, Eve stops, since she has factored n.

6. If for some 7, R;11 = oo mod n, then Eve starts over with a new random
point.

In a few iterations, this should factor n. Since ed —1 is a multiple of #F(Z,,),
Ry, = (ed —1)R =edR — R = oc.

Therefore, each iteration of the procedure will eventually end with a point R;
that is oo mod at least one of p, q. Let 2% be the highest power of 2 dividing
p+ 1. If we take a random point P in E(F,), then the probability is 1/2 that
the order of P is divisible by 2¥". This follows easily from the fact that E (F)p)
is cyclic (see Exercise 6.6). In this case, Rp_1 = 2 "TwP # oo (mod p),
while Ry = 2F 0P = oo (mod p). If the order is not divisible by 2% then
Ry/—1 = 0o (mod p). Similarly, if 2" is the highest power of 2 dividing ¢+ 1,
then Ry/_1 = oo (mod ¢) half the time, and # oo (mod ¢) half the time.
Since mod p and mod ¢ are independent, it is easy to see that the sequence
Ry, R1, R, ... reaches oo mod p and mod ¢ at different indices i at least half
the time. This means that for at least half of the choices of random starting
points R, we obtain a factorization of n.

If Ry = oo mod p, but not mod ¢, then somewhere in the calculation of Ry
there was a denominator of a slope that was infinite mod p but not mod gq.
The ged of this denominator with n yields p. A similar situation occurs if p
and q are switched. Therefore, if R is infinite mod exactly one of the primes,
Eve obtains a factorization, as claimed in step (3).

We conclude that knowledge of the decryption exponent d is computation-
ally equivalent to knowledge of the factorization of n.

6.9 A Cryptosystem Based on the Weil Pairing

In Chapter 5, we saw how the Weil pairing could be used to reduce the
discrete log problem on certain elliptic curves to the discrete log problem for
the multiplicative group of a finite field. In the present section, we’ll present
a method, due to Boneh and Franklin, that uses the Weil pairing on these
curves to obtain a cryptosystem (other pairings could also be used). The
reader may wonder why we use these curves, since the discrete log problem
is easier on these curves. The reason is that the properties of the pairing are
used in an essential way. The fact that the pairing can be computed quickly
is vital for the present algorithm. This fact was also important in reducing
the discrete log problem to finite fields. However, note that the discrete log
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problem in the finite field is still not trivial as long as the finite field is large
enough.

For simplicity, we’ll consider a specific curve, namely the one discussed in
Section 6.2. Let E be defined by y? = x> + 1 over F,,, where p = 2 (mod 3).
Let w € Fp2 be a primitive third root of unity. Define a map

B : E(Fp2) - E(Fp2)7 (ZE,y) = (wx,y)v B(OO) = 0.

Suppose P has order n. Then ((P) also has order n. Define the modified
WEeil pairing
€n(P1, P2) = ey (P, B(P2)),

where e,, is the usual Weil pairing and Py, P> € E[n|. We showed in Lemma 6.1
that if 3 { n and if P € E(F,) has order exactly n, then é, (P, P) is a primitive
nth root of unity.

Since E is supersingular, by Proposition 4.33, E(F,) has order p+ 1. We'll
add the further assumption that p = 6/ — 1 for some prime ¢. Then 6P has
order ¢ or 1 for each P € E(F,).

In the system we’ll describe, each user has a public key based on her or
his identity, such as an email address. A central trusted authority assigns
a corresponding private key to each user. In most public key systems, when
Alice wants to send a message to Bob, she looks up Bob’s public key. However,
she needs some way of being sure that this key actually belongs to Bob, rather
than someone such as Eve who is masquerading as Bob. In the present system,
the authentication happens in the initial communication between Bob and the
trusted authority. After that, Bob is the only one who has the information
necessary to decrypt messages that are encrypted using his public identity.

A natural question is why RSA cannot be used to produce such a system.
For example, all users could share the same common modulus n, whose fac-
torization is known only to the trusted authority (TA). Bob’s identity, call it
bobid, would be his encryption exponent. The TA would then compute Bob’s
secret decryption exponent and communicate it to him. When Alice sends
Bob a message m, she encrypts it as m®°* (mod n). Bob then decrypts us-
ing the secret exponent provided by the TA. However, anyone such as Bob who
knows an encryption and decryption exponent can find the factorization of n
(using a variation of the method of Section 6.8), and thus read all messages
in the system. Therefore, the system would not protect secrets. If, instead,
a different n is used for each user, some type of authentication procedure is
needed for a communication in order to make sure that the n is the correct
one. This brings us back to the original problem.

The system described in the following gives the basic idea, but is not secure
against certain attacks. For ways to strengthen the system, see [15].

To set up the system, the trusted authority does the following:

1. Chooses a large prime p = 6/ — 1 as above.

2. Chooses a point P of order ¢ in E(F,).
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3. Chooses hash functions H; and Hs. The function H; takes a string of
bits of arbitrary length and outputs a point of order £ on E (see Exercise
6.8). The function Hs inputs an element of order ¢ in FZQ and outputs
a binary string of length n, where n is the length of the messages that
will be sent.
4. Chooses a secret random s € FeX and computes P,y = sP.
5. Makes p, Hy, H,n, P, P, public, while keeping s secret.
If a user with identity I D wants a private key, the trusted authority does the
following;:
1. Computes Qrp = Hy(ID). This is a point on E.
2. Lets D]D = S@ID.
3. After verifying that I D is the identification for the user with whom he

is communicating, sends D;p to this user.

If Alice wants to send a message M to Bob, she does the following:

1.

Looks up Bob’s identity, for example, I D =hobe com puter.com (written
as a binary string) and computes Q;p = H;(ID).

Chooses a random r € F .
Computes grp = €/(Qr1p, Ppub)-
Lets the ciphertext be the pair
¢c=(rP, M & Ha(g7p)),

where @& denotes XOR (= bitwise addition mod 2).

Bob decrypts a ciphertext (u,v) as follows:

1.

Uses his private key D;p to compute hyp = é¢(Dip,u).

2. Computes m = v @ Ha(hrp).

The decryption works because

é(Dip,u) =¢é¢(sQrp,rP) = €(Qrp, P)*" = é(Qrp, Ppuv)" = g7p-

Therefore,

m = ® Hy(e/(Dip,u)) = (M @ Ha(g97p)) ® Ha(g7p) = M.
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Exercises

6.1

6.2

6.3

6.4

Show that the map [ in Section 6.2 is an isomorphism (it is clearly
bijective; the main point is that it is a homomorphism).

(a) Suppose that the ElGamal signature scheme is used to produce
the valid signed message (m, R, s), as in Section 6.5. Let h be an
integer with ged(h, N) = 1. Assume ged(f(R), N) = 1. Let

R =hR, § =sf(R)f(R)"*h™' (mod N),
m' =mf(R)f(R)~" (mod N).

Show that (m/, R, s’) is a valid signed message (however, it is un-
likely that m’ is a meaningful message, so this procedure does not
affect the security of the system).

(b) Suppose a hash function is used, so the signed messages are of the
form (m, Ry, sy). Explain why this prevents the method of (a)
from working.

Use the notation of Section 6.5. Let u, v be two integers with ged(v, N) =
1 and let R = uA + vB. Let s = —v ! f(R) (mod N) and m = su
(mod N).

(a) Show that (m, R, s) is a valid signed message for the ElGamal sig-
nature scheme. (However, it is unlikely that m is a meaningful
message. )

(b) Suppose a hash function is used, so the signed messages are of the
form (m, Ry, sy). Explain why this prevents the method of (a)
from working.

Let E be an elliptic curve over F, and let N = #E(F,). Alice has a
message that she wants to sign. She represents the message as a point
M € E(F,). Alice has a secret integer a and makes public points A and
B in E(F,) with B = aA, as in the ElGamal signature scheme. There
is a public function f : E(F,) — Z/NZ. Alice performs the following
steps.

(a) She chooses a random integer k with ged(k, N) = 1.
(b) She computes R = M — kA.

(c) She computes s = k~1(1 — f(R)a) (mod N).

(d) The signed message is (M, R, s).

Bob verifies the signature as follows.
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(a) He computes V3 = sR — f(R)B and Vo = sM — A.

(b) He declares the signature valid if V; = V5.

Show that if Alice performs the required steps correctly, then the ver-
ification equation Vi = V5 holds. (This signature scheme is a variant
of one due to Nyberg and Rueppel (see [12]). An interesting feature is

that the message appears as an element of the group E(F,) rather than
as an integer.)

6.5 Let p,q be prime numbers and suppose you know the numbers m =
(p+1)(¢+1) and n = pg. Show that p,q are the roots of the quadratic

equation

2 —(m-n—-Dz+n=0

(so p,q can be found using the quadratic formula).
6.6 Let E be the elliptic curve y? = 23 + b mod p, where p = 2 (mod 3).
(a) Suppose E[n| C E(F),) for some n # 0 (mod p). Show that n|p—1
and n?|p + 1. Conclude that n < 2.
(b) Show that E[2] € E(F,).
(c) Show that E(F,) is cyclic (of order p 4 1).

6.7 Let p = 3 (mod 4) be a prime number. Suppose z = y? (mod p).

(a) Show that (y®P*+1/2)2 = 42 (mod p).

(b) Show that yP*+1/2 = 4y (mod p).

(c) Show that 2(P+1)/4 is a square root of 2 (mod p).
)

(d) Suppose z is not a square mod p. Using the fact that —1 is not a
square mod p, show that —z is a square mod p.

(e) Show that z(PT1)/4 is a square root of —z (mod p).

6.8 Let p =6¢—1 and E be as in Section 6.9. The hash function H; in that
section inputs a string of bits of arbitrary length and outputs a point of
order £ on E. One way to do this is as follows.

(a) Choose a hash function H that outputs integers mod p. Input a
binary string B. Let the output of H be the y coordinate of a
point: y = H(B). Show that there is a unique # mod p such that
(z,y) lies on E.

(b) Let Hi1(B) = 6(x,y). Show that H;(B) is a point of order ¢ or 1
on E. Why is it very unlikely that H;(B) has order 17
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Chapter 7

Other Applications

In the 1980s, about the same time that elliptic curves were being introduced
into cryptography, two related applications of elliptic curves were found, one
to factoring and one to primality testing. These are generalizations of classical
methods that worked with multiplicative groups Z, . The main advantage of
elliptic curves stems from the fact that there are many elliptic curves mod a
number n, so if one elliptic curve doesn’t work, another can be tried.

The problems of factorization and primality testing are related, but are
very different in nature. The largest announced factorization up to the year
2007 was of an integer with 200 digits. However, it was at that time possible
to prove primality of primes of several thousand digits.

It is possible to prove that a number is composite without finding a factor.
One way is to show that ¢! # 1 (mod n) for some a with ged(a,n) = 1.
Fermat’s little theorem says that if n is prime and ged(a,n) = 1, then a"~! =
(mod n), so it follows that n must be composite, even though we have not
produced a factor. Of course, if ! =1 (mod n) for several random choices
of a, we might suspect that n is probably prime. But how can we actually
prove n is prime? If n has only a few digits, we can divide n by each of the
primes up to y/n. However, if n has hundreds of digits, this method will take
too long (much longer than the predicted life of the universe). In Section 7.2,
we discuss efficient methods for proving primality. Similarly, suppose we have
proved that a number is composite. How do we find the factors? This is a
difficult computational problem. If the smallest prime factor of n has more
than a few digits, then trying all prime factors up to y/n cannot work. In
Section 7.1, we give a method that works well on numbers n of around 60
digits.

7.1 Factoring Using Elliptic Curves

In the mid 1980s, Hendrik Lenstra [75] gave new impetus to the study of
elliptic curves by developing an efficient factoring algorithm that used elliptic
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curves. It turned out to be very effective for factoring numbers of around 60
decimal digits, and, for larger numbers, finding prime factors having around
20 to 30 decimal digits.

We start with an example.

Example 7.1

We want to factor 4453. Let E be the elliptic curve y? = 23 + 102 — 2 mod
4453 and let P = (1, 3). Let’s try to compute 3P. First, we compute 2P. The
slope of the tangent line at P is

322 + 10
2y

We used the fact that ged(6,4453) = 1 to find 67! = 3711 (mod 4453). Using
this slope, we find that 2P = (z,y), with

1
_ F?) = 3713 (mod 4453).

r=37132 —2=14332, y=-3713(z— 1) — 3 = 3230.
To compute 3P, we add P and 2P. The slope is

3230 —3 3227
4332 —1  4331°

But ged(4331,4453) = 61 # 1. Therefore, we cannot find 433171 (mod 4453),
and we cannot evaluate the slope. However, we have found the factor 61 of
4453, and therefore 4453 = 61 - 73.

Recall (Section 2.11) that

E(Zass3) = E(Fe1) © E(Fr3).
If we look at the multiples of P mod 61 we have
P=(1,3),2P=(1,58),3P =00, 4P = (1,3), ... (mod 61).
However, the multiples of P mod 73 are
P=(1,3),2P = (25,18),3P =(28,44), ..., 64P =00 (mod 73).

Therefore, when we computed 3P mod 4453, we obtained co mod 61 and a
finite point mod 73. This is why the slope had a 61 in the denominator and
was therefore infinite mod 61. If the order of P mod 73 had been 3 instead
of 64, the slope would have had 0 mod 4453 in its denominator and the ged
would have been 4453, which would have meant that we did not obtain the
factorization of 4453. But the probability is low that the order of a point
mod 61 is exactly the same as the order of a point mod 73, so this situation
will usually not cause us much trouble. If we replace 4453 with a much larger
composite number n and work with an elliptic curve mod n and a point P
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on F, then the main problem we’ll face is finding some integer k such that
kP = oo mod one of the factors of n. In fact, we’ll often not obtain such an
integer k. But if we work with enough curves F, it is likely that at least one
of them will allow us to find such a k. This is the key property of the elliptic
curve factorization method. [

Before we say more about elliptic curves, let’s look at the classical p — 1
factorization method. We start with a composite integer n that we want
to factor. Choose a random integer a and a large integer B. Compute

a; =a®  (mod n), and ged(a; — 1,n).
Note that we do not compute a?' and then reduce mod n, since that would
overflow the computer. Instead, we can compute a®' mod n recursively by
at = (a(b_l)!)b (mod n), for b=2,3,4,...,B. Or we can write B! in binary
and do modular exponentiation by successive squaring.

We say that an integer m is B-smooth if all of the prime factors of m are
less than or equal to B. For simplicity, assume n = pq is the product of two
large primes. Suppose that p — 1 is B-smooth. Since B! contains all of the
primes up to B, it is likely that B! is a multiple of p — 1 (the main exception
is when p — 1 is divisible by the square of a prime that is between B/2 and
B). Therefore,

ay =a® =1 (mod p)

by Fermat’s little theorem (we ignore the very unlikely case that p|a).

Now suppose g — 1 is divisible by a prime ¢ > B. Among all the elements in
the cyclic group Z;, there are at most (¢ — 1)/¢ that have order not divisible
by ¢ and at least (¢ — 1)(¢ — 1)/¢ that have order divisible by ¢. (These
numbers are exact if £2 ¥ ¢ — 1.) Therefore, it is very likely that the order of
a is divisible by ¢, and therefore

ap=aP #1 (mod q).
Therefore, a; — 1 is a multiple of p but is not a multiple of g, so

ged(ar — 1, pg) = p.

If all the prime factors of ¢ — 1 are less than B, we usually obtain ged(a; —
1,n) = n. In this case, we can try a smaller B, or use various other procedures
(similar to the one in Section 6.8). The main problem is choosing B so that
p—1 (or ¢ — 1) is B-smooth. If we choose B small, the probability of this
is low. If we choose B very large, then the computation of a; becomes too
lengthy. So we need to choose B of medium size, maybe around 10%. But
what if both p — 1 and ¢ — 1 have prime factors of around 20 decimal digits?
We could keep trying various random choices of a, hoping to get lucky. But
the above calculation shows that if there is a prime ¢ with ¢/|p—1 but ¢/ > B,
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then the chance that a; = 1 (mod p) is at most 1/¢. This is very small if
¢' ~ 10?9, There seems to be no way to get the method to work. The elliptic
curve method has a much better chance of success in this case because it
allows us to change groups.

In the elliptic curve factorization method, we will need to choose random
elliptic curves mod n and random points on these curves. A good way to do
this is as follows. Choose a random integer A mod n and a random pair of
integers P = (u,v) mod n. Then choose C (the letter B is currently being
used for the bound) such that

C=v*—u®— Au (mod n).

This yields an elliptic curve y? = z* + Az + C with a point (u,v). This is
much more efficient than the naive method of choosing A, C, u, then trying to
find v. In fact, since being able to find square roots mod n is computationally
equivalent to factoring n, this naive method will almost surely fail.

Here is the elliptic curve factorization method. We start with a com-
posite integer n (assume n is odd) that we want to factor and do the following.

1. Choose several (usually around 10 to 20) random elliptic curves E; :
y? = 23 + A;x + B; and points P; mod n.

2. Choose an integer B (perhaps around 10%) and compute (B!)P; on E;
for each i.

3. If step 2 fails because some slope does not exist mod n, then we have
found a factor of n.

4. If step 2 succeeds, increase B or choose new random curves F; and
points P; and start over.

Steps 2, 3, 4 can often be done in parallel using all of the curves E; simulta-
neously.

The elliptic curve method is very successful in finding a prime factor p of n
when p < 10*°. Suppose we have a random integer n of around 100 decimal
digits, and we know it is composite (perhaps, for example, 2"~ £ 1 (mod n),
so Fermat’s little theorem implies that n is not prime). If we cannot find a
small prime factor (by testing all of the primes up to 107, for example), then
the elliptic curve method is worth trying since there is a good chance that n
will have a prime factor less than 104°.

Values of n that are used in cryptographic applications are now usually
chosen as n = pq with both p and ¢ large (at least 75 decimal digits). For
such numbers, the quadratic sieve and the number field sieve factorization
methods outperform the elliptic curve method. However, the elliptic curve
method is sometimes used inside these methods to look for medium sized
prime factors of numbers that appear in intermediate steps.
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Why does the elliptic curve method work? For simplicity, assume n = pq.
A random elliptic curve E mod n can be regarded as an elliptic curve mod p
and an elliptic curve mod ¢q. We know, by Hasse’s theorem, that

p+1—-2p<#E(F,) <p+1+2/p.

In fact, each integer in the interval (p+1—2,/p, p+1+2,/p) occurs for some
elliptic curve. If B is of reasonable size, then the density of B-smooth integers
in this interval is high enough, and the distribution of orders of random elliptic
curves is sufficiently uniform. Therefore, if we choose several random F, at
least one will probably have B-smooth order. In particular, if P lies on this
E, then it is likely that (B!)P = oo (mod p) (as in the p — 1 method, the
main exception occurs when the order is divisible by the square of a prime
near B). It is unlikely that the corresponding point P on E mod ¢ will satisfy
(B!)P = oo (mod ¢). (If it does, choose a smaller B or use the techniques
of Section 6.8 to factor n.) Therefore, when computing (B!)P (mod n), we
expect to obtain a slope whose denominator is divisible by p but not by q.
The ged of this denominator with n yields the factor p.

In summary, the difference between the p — 1 method and the elliptic curve
method is the following. In the p — 1 method, there is a reasonable chance
that p — 1 is B-smooth, but if it is not, there is not much we can do. In the
elliptic curve method, there is a reasonable chance that #E(F)) is B-smooth,
but if it is not we can choose another elliptic curve F.

It is interesting to note that the elliptic curve method, when applied to
singular curves (see Section 2.10), yields classical factorization methods.

First, let’s consider the curve E given by y? = 2%(x+1) mod n. We showed
in Theorem 2.31 that the map
r+y
r—y
is an isomorphism from E, s = F(Z,)\(0,0) to Z)*. (Actually, we only showed
this for fields. But it is true mod p and mod ¢, so the Chinese Remainder
Theorem allows us to get the result mod n = pg.) A random point P on
E,s corresponds to a random a € ZX. Calculating (B!)P corresponds to
computing a; = a? (mod n). We have (B!)P = oo (mod p) if and only if
a1 = 1 (mod p), since oo and 1 are the identity elements of their respective
groups. Fortunately, we have ways to extract the prime factor p of n in both
cases. The first is by computing the gcd in the calculation of a slope. The
second is by computing ged(a; — 1,n). Therefore, we see that the elliptic
curve method for the singular curve y? = 22(x + 1) is really the p — 1 method
in disguise.

If we consider y* = z?(z + a) when a is not a square mod p, then we get
the classical p + 1 factoring method (see Exercise 7.2).

Now let’s consider E given by y? = 3. By Theorem 2.30, the map

(z,y) —

e
(a:,y) = =
Yy
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is an isomorphism from E,s = E(Z,) \ (0,0) to Z,, regarded as an additive
group. A random point P in E,s corresponds to a random integer a mod
n. Computing (B!)P corresponds to computing (B!)a (mod n). We have
(B!)P = oo (mod p) if and only if (B!)a = 0 (mod p), which occurs if and
only if p < B (note that this is much less likely than having p — 1 be B-
smooth). Essentially, this reduces to the easiest factorization method: divide
n by each of the primes up to B. This method is impractical if the smallest
prime factor of n is not small. But at least it is almost an efficient way to
do it. If we replace B! by the product @) of primes up to B, then computing
ged(@Q, n) is often faster than trying each prime separately.

7.2 Primality Testing

Suppose n is an integer of several hundred decimal digits. It is usually
easy to decide with reasonable certainty whether n is prime or composite.
But suppose we actually want to prove that our answer is correct. If n is
composite, then usually either we know a nontrivial factor (so the proof that
n is composite consists of giving the factor) or n failed a pseudoprimality test
(for example, perhaps a”~! # 1 (mod n) for some a). Therefore, when n
is composite, it is usually easy to prove it, and the proof can be stated in
a form that can be checked easily. But if n is prime, the situation is more
difficult. Saying that n passed several pseudoprimality tests indicates that n
is probably prime, but does not prove that n is prime. Saying that a computer
checked all primes up to v/n is not very satisfying (and is not believable when n
has several hundred digits). Cohen and Lenstra developed methods involving
Jacobi sums that work well for primes of a few hundred digits. However, for
primes of a thousand digits or more, the most popular method currently in use
involves elliptic curves. (Note: For primes restricted to special classes, such
as Mersenne primes, there are special methods. However, we are considering
randomly chosen primes.)

The elliptic curve primality test is an elliptic curve version of the classical
Pocklington-Lehmer primality test. Let’s look at it first.

PROPOSITION 7.1

Letn > 1 be an integer, and ktn — 1 = rs with r > \/n. Suppose that, for
each prim e {|r, there exists an Integer a, with

a;'=1 (modn) and ged (aén_l)/e - 1,n> =1.

Then n isprime.
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PROOF Let p be a prime factor of n and let £¢ be the highest power of ¢

dividing r. Let b = aén_l)/ee (mod p). Then

b = a;'=1 (mod p) and B = aénil)/ﬁ #1 (mod p),

gn—l)/é - l,n) = 1. It follows that the order of b (mod p) is ¢¢.

Therefore, £¢|p — 1. Since this is true for every prime power factor £¢ of r, we
have r|p — 1. In particular,

since ged (a

p>r>/n.
If n is composite, it must have a prime factor at most y/n. We have shown
this is not the case, so n is prime.

REMARK 7.2 A converse of Proposition 7.1 is true. See Exercise 7.3.

Example 7.2
Let n = 153533. Thenn —1 = 4-131-293. Let r = 4 -131. The primes
dividing r are £ = 2 and ¢ = 131. We have

2" =1 (modn) and gcd (2("_1)/2 — 1,n) =1,
so we can take as = 2. Also,
2" =1 (modn) and gcd (2(”_1)/131 — 1,n) =1,

so we can take ay37 = 2, also. The hypotheses of Proposition 7.1 are satisfied,
so we have proved that 153533 is prime. The fact that as = ai31 can be
regarded as coincidence. In fact, we could take as = a131 = ag93 = 2, which
shows that 2 is a primitive root mod 153533 (see Appendix A). So, in a sense,
the calculations for the Pocklington-Lehmer test can be regarded as progress
towards showing that there is a primitive root mod n (see Exercise 7.3).

Of course, to make the proof complete, we should prove that 2 and 131 are
primes. We leave the case of 2 as an exercise and look at 131. We’ll use the
Pocklington-Lehmer test again. Write 130 = 2-5-13. Let » = 13, so we have
only one prime ¢, namely ¢ = 13. We have

2% =1 (mod 131) and ged (2'° -1, 131) = 1.

Therefore, we can take a;3 = 2. The Pocklington-Lehmer test implies that
131 is prime. Of course, we need the fact that 13 is prime, but 13 is small
enough to check by trying possible factors. I

We can compactly record the proof that an integer n is prime by stating
the values of the prime factors ¢ of r» and the corresponding integers a,. We
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should also include proofs of primality of each of these primes ¢. And we
should include proofs of primality of the auxiliary primes used in the proofs
for each ¢, etc. Anyone can use this information to verify our proof. We never
need to say how we found the numbers a,, nor how we factored r.

What happens if we cannot find enough factors of n — 1 to obtain r > \/n
such that we know all the prime factors ¢ of r? This is clearly a possibility if
we are working with n of a thousand digits. As in the case of the p—1 factoring
method in Section 7.1, an elliptic curve analogue comes to the rescue. Note
that the number n — 1 that we need to factor is the order of the group Z. If
we can use elliptic curves, we can replace n —1 with a group order near n, but
there will be enough choices for the elliptic curve that we can probably find
a number that can be partially factored. The following is due to Goldwasser
and Kilian [47]. Recall that a finite point in F(Z,) is a point (z,y) with
x,y € Z,. This is in contrast to the points in E(Z,,) that are infinite mod
some of the factors of n and therefore cannot be expressed using coordinates
in Z,,. See Section 2.10.

THEOREM 7.3
Letn > 1 and ket F ke an elliptic curve m od n. Suppose there exist distinct
prim e num bers ¢4, .. ., ¢, and finite points P; € E(Z,,) such that

2. [, 6> (044 1),

Then n isprime.

PROOF Let p be a prime factor of n. Write n = p/n; with p{n;. Then
E(Z,) = E(Z,r) ® E(Z,,).

Since P; is a finite point in E(Z,,), it yields a finite point in E(Z,s), namely
P; mod p/. We can further reduce and obtain a finite point P; , = P; mod p
in E(F,). Since ¢;P; = oo mod n, we have ¢; P, = oo mod every factor of n.
In particular, ¢;P; , = oo in E(F,), which means that P; , has order ¢;. It
follows that

i |#E(Fy)
for all 4, so #E(F)) is divisible by []¥¢;. Therefore,

2 kK 2
(n/4+1)" <[ < #BE,) <p+1+2yp=(p2+1)
=1

so p > y/n. Since all prime factors of n are greater than y/n, it follows that n
is prime.
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Example 7.3
Let n = 907. Let E be the elliptic curve y? = 23 +10x —2 mod n. Let £ = 71.
Then

2
‘> (9071/4 4 1) ~ 42.1.

Let P = (819,784). Then 71P = co. Theorem 7.3 implies that 907 is prime.
Of course, we needed the fact that 71 is prime, which could also be proved
using Theorem 7.3, or by direct calculation.

How did we find E and P? First, we looked at a few elliptic curves mod 907
until we found one whose order was divisible by a prime ¢ that was slightly
larger than 42.1. (If we had chosen ¢ ~ 907 then we wouldn’t have made much
progress, since we would still have needed to prove the primality of £). In fact,
to find the order of the curve, we started with curves where we knew a point.
In the present case, E has the point (1,3). Using Baby Step, Giant Step, we
found the order of (1, 3) to be 923 = 13-71. Then we took P = 13(1,3), which
has order 71.

For large n, the hardest part of the algorithm is finding an elliptic curve
FE with a suitable number of points. One possibility is to choose random
elliptic curves mod n and compute their orders, for example, using Schoof’s
algorithm, until an order is found that has a suitable prime factor £. A more
efficient procedure, due to Atkin and Morain (see [7]), uses the theory of
complex multiplication to find suitable curves.

As in the Pocklington-Lehmer test, once a proof of primality is found, it
can be recorded rather compactly. The Goldwasser-Kilian test has been used
to prove the primality of numbers of more than 1000 decimal digits.

Exercises

7.1 Let E be y? = 23 — 20z + 21 mod 35, and let P = (15, —4).
(a) Factor 35 by trying to compute 3P.
(b) Factor 35 by trying to compute 4P by doubling twice.
(c) Compute both 3P and 4P on E mod 5 and on E mod 7. Explain
why the factor 5 is obtained by computing 3P and 7 is obtained by
computing 4P.

7.2 This exercise shows that when the elliptic curve factorization method is
applied to the singular curve y? = x%(x+a) where a is not a square mod
a prime p, then we obtain a method equivalent to the p 4+ 1 factoring
method [134]. We first describe a version of the p 4+ 1 method. Let p be
an odd prime factor of the integer n that we want to factor. Let o5 = 2
and choose a random integer t; mod n. Define t,, by the recurrence
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relation t,,42 = t1t;m41 — ty for m > 0. Let 3,7 be the two roots of
f(X)=X?—#;X+1in F,2. Assume that ¢7 — 4 is not a square in F,
so 3,7 ¢ Fp. Let s, = 8™ + ™ for m > 0.
(a) Show that g2 = t;3m+!1 — 3™ for m > 0, and similarly for +.
(b)
(¢) Show that t,, = s, (mod p) for all m > 0.
(d) Show that 8P is a root of f(X) (mod p), and that 5P # 3. There-
fore, v = JP.
e) Show that BT =1 and A1 = 1.
f) Show that t,11 —2 =0 (mod p).

(g) Show that if p+1|B! for some bound B (so p+1 is B-smooth) then
ged(tpr — 2,n) is a multiple of p. Since there are ways to compute
tgr mod n quickly, this gives a factorization method.

Show that s,,4+2 = t1Sm+1 — Sm for all m > 0.

We now show the relation with the elliptic curve factorization method.
Consider a curve E given by y? = x?(z + a) mod n, where a is not a
square mod p. Choose a random point P on E. To factor n by the
elliptic curve method, we compute B!P. By Theorem 2.31, P mod p
corresponds to an element 8 = u + vy/a € Fj2 with u* — v?a = 1.

(h) Show that 3 is a root of X2 — 2uX + 1.

(i) Show that B!P = oo mod p if and only if 38' =1 in Fp.

(j) Let t; = 2u and define the sequence t,, as above. Show that
B!P = oo mod p if and only if p divides ged(tp1 — 2,n). Therefore,
the elliptic curve method factors n exactly when the p + 1 method
factors n.

7.3 (a) Show that if n is prime and g is a primitive root mod n, then ay = g
satisfies the hypotheses of Proposition 7.1 for all /.

(b) Suppose we take r = n — 1 and s = 1 in Proposition 7.1, and
suppose that there is some number g such that a, = g satisfies the
conditions on a, for each /. Show that ¢ is a primitive root mod
n. (Hint: What power of ¢ divides the order of g mod n?)

7.4 The proof of Theorem 7.3 works for singular curves given by a Weier-
strass equation where the cubic has a double root, as in Theorem 2.31.
This yields a theorem that uses Z ), rather than F(Z,), to prove that n
is prime. State Theorem 7.3 in this case in terms of Z). (Rem ark: The
analogue of Theorem 7.3 for Z, is rather trivial. The condition that
P; is a finite point becomes the condition that P; is a number mod n
such that ged(P;,n) = 1 (that is, it is not the identity for the group law
mod any prime factor of n). Therefore ¢; P; = oo translates to ¢;P; =0
(mod n), which implies that ¢; = 0 (mod n). Since ¢; is prime, we must
have n = ¢;. Hence n is prime.)
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Chapter 8

Elliptic Curves over ()

As we saw in Chapter 1, elliptic curves over Q represent an interesting class of
Diophantine equations. In the present chapter, we study the group structure
of the set of rational points of an elliptic curve E defined over Q. First, we
show how the torsion points can be found quite easily. Then we prove the
Mordell-Weil theorem, which says that F(Q) is a finitely generated abelian
group. As we’ll see in Section 8.6, the method of proof has its origins in
Fermat’s method of infinite descent. Finally, we reinterpret the descent calcu-
lations in terms of Galois cohomology and define the Shafarevich-Tate group.

8.1 The Torsion Subgroup. The Lutz-Nagell The-
orem

The torsion subgroup of E(Q) is easy to calculate. In this section we’ll give
examples of how this can be done. The crucial step is the following theorem,
which was used in Chapter 5 to study anomalous curves. For convenience, we
repeat some of the notation introduced there.

Let a/b # 0 be a rational number, where a, b are relatively prime integers.
Write a/b = p"a1 /by with p{ajb;. Define the p-adic valuation to be

vp(a/b) = 1.

For example, v3(7/40) = —3, v5(50/3) = 2, and v7(1/2) = 0. Define v,(0) =
+00 (so v,(0) > n for every integer n).

Let E be an elliptic curve over Z given by y? = 23 + Az + B. Let r > 1 be
an integer. Define

E, ={(z,y) € E(Q)|vp(z) < —=2r, wv,(y) < —3r}U{oco}.
These are the points such that x has at least p?” in its denominator and y
has at least p3” in its denominator. These should be thought of as the points
that are close to oo mod powers of p (that is, p-adically close to co).

199
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200 CHAPTER 8 ELLIPTIC CURVES OVER Q

THEOREM 8.1
Let E begiven by y?> = 23+ Az + B with A, B € Z . Letp ke a prim e and ket
r ke a positive Integer. T hen

1. E, is a subgroup of E(Q).

2. If (z,y) € E(Q), then vy(x) < 0 ifand only ifvy(y) < 0. In this case,
there exists an Integer r > 1 such that v,(z) = —2r and v,(y) = —3r.

3. Themap

Ar i By Esy — Zipar

(z,y) — p"z/y (mod p*")
oo — 0

is an injective hom om orphism (where Z,+- is a group under addition) .

4. If (z,y) € E, but (z,y) € Ery1, then \.(z,y) Z 0 (mod p).

REMARK 8.2 The map A, should be regarded as a logarithm for the
group FE,/Es, since it changes the law of composition in the group to addition
in Zpsr, just as the classical logarithm changes the composition law in the

multiplicative group of positive real numbers to addition in R. |

PROOF The denominator of 23 + Az + B equals the denominator of 32.
It is easy to see that the denominator of y is divisible by p if and only if
the denominator of z is divisible by p. If p?, with j > 0, is the exact power
of p dividing the denominator of ¥, then p?/ is the exact power of p in the
denominator of 2. Similarly, if p¥, with & > 0, is the exact power of p dividing
the denominator of z, then denominator of 22 + Az + B is exactly divisible
by p?F. Therefore, 2j = 3k. It follows that there exists r with j = 3r and
k = 2r. This proves (2). Also, we see that

{(z,y) € Er|vp(x) = =2, vp(y) = =3r} = {(z,y) € Er[vp(z/y) =1}

is the set of points in E, not in E,,q. This proves (4). Moreover, if A\,.(z,y)
0 (mod p*"), then v,(x/y) > 5r, so (z,y) € Es.. This proves that A, is
injective (as soon as we prove it is a homomorphism).

Let

NORGIORIOE
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which can be written as
s =3+ Ats®> + Bs>.

In the following, it will be convenient to write p’|z for a rational number
z when p? divides the numerator of z. Similarly, we’ll write z = 0 (mod p’)
in this case. These extended notions of divisibility and congruence satisfy
properties similar to those for the usual notions.

LEMMA 8.3
(z,y) € B, ifand only ifp3"|s. I£p®|s, then p"|t.

PROOF If (z,y) € E,, then p?" divides the denominator of y, so p3"
divides the numerator of s = 1/y. Conversely, suppose p"|s. Then p3"
divides the denominator of y. Part (2) of the theorem shows that p?” divides
the denominator of x. Therefore, (x,y) € E,.

If p37|s, then the exact power of p dividing the denominator of y is p3¥,
with & > r. Part (2) of the theorem implies that the exact power of p dividing

t = x/y is p*. Since k > r, we have p"|t. |

We now continue with the proof of Theorem 8.1. Let A, be as in the
statement of the theorem. Note that

Ar(=(z,9)) = Ar(w, —y) = —p~ "z /y = =\ (2,9).
We now claim that if P, + P> + P; = oo then
Ar(Pr) + Ar(P2) + Ar(P3) =0 (mod p™).

The proof will also show that if P, Py € E,, then P3; € E, (hence E, is a
subgroup). Therefore,

)\’I”(Pl + PQ) - )‘r(_P3) - _)\’I“(PS) = Ar(Pl) + /\r(p2)7

SO A, is a homomorphism.
Recall that three points add to oo if and only if they are collinear (Exercise
2.6). To prove the claim, let Py, Py, P53 lie on the line

ar +by+d=0
and assume that P, P, € F,. Dividing by y yields the s, line
at + b+ ds = 0.

Let P! denote the point P; written in terms of the s, coordinates. In other
words, if
P = (xi,4i),
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then
P/ - (sivti)

with
si=1/yi, ti=xz;i/y;.

The points Py, P;, P4 lie on the line at + b+ ds = 0.
Since P, P, € E,., Lemma 8.3 implies that

p3r|8z‘, p"lt;, fori=1,2.

As discussed in Section 2.4, at a finite point (x,y), the order of intersection
of the line ax +by+d = 0 and the curve y? = 23+ Az + B can be calculated by
using projective coordinates and considering the line a X 4+ 0Y 4+ dZ = 0 and
the curve ZY? = X3 + AXZ? 4+ BZ3. In this case, x = X/Z and y = Y/Z.

If we start with a line at + b+ ds = 0 and the curve s = t3 4+ Ats? + Bs?,
we can homogenize to get aT + bU + dS = 0 and SU? = T3 + ATS? + BS3.
In this case, we have t =T /U and s = S/U. If welet Z=S,Y =U, X =T,
we find that we are working with the same line and curve as above. A point
(z,y) corresponds to

t=T/U=X/Y =z/y and s=S/U=2/Y =1/y.

Since orders of intersection can be calculated using the projective models, it
follows that the order of intersection of the line ax + by + d = 0 with the curve
y? = 2% + Az + B at (x,y) is the same as the order of intersection of the line
at + b+ ds = 0 with the curve s = t3 + Ats®> + Bs® at (s,t) = (1/y,x/y).
For example, the line and curve are tangent in the variables x,y if and only if
they are tangent in the variables ¢, s. This allows us to do the elliptic curve
group calculations using t, s instead of x,y.

LEMMA 8.4

A Inet = ¢, where ¢ € Q is a constant with ¢ = 0 (mod p), Intersects the
curve s = t3 + As?*t + Bs3 in at m ost one point (s,t) with s = 0 (mod p).
T his line is not tangent at such a point of ntersection.

PROOF Suppose we have two values of s, call them s, s9 with s1 =55, =0
(mod p). Suppose s; = so (mod p*) for some k > 1. Write s; = ps;. Then
s| = s (mod pF~1), so ¢/% = s, (mod pF 1), so s2 = p2s,* = p?sh® = 52

(mod pF*+1). Similarly, s3 = s3 (mod p**2). Therefore,
s1 =>4 Acs? + Bs? = ¢ + Acss + Bsy = s (mod pFTh).

By induction, we have s; = sy (mod p*) for all k. It follows that s; = s, so
there is at most one point of intersection with s =0 (mod p).
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The slope of the tangent line to the curve can be found by implicit differ-
entiation:

ds ds ds
— =3t + As®> + 2Ast— + 3Bs*—
at + As® + S 7t + S e
SO

@ B 3t2 + Asg?

dt  1—2Ast —3Bs?’

If the line ¢ = c is tangent to the curve at (s,t), then 1 — 2Ast — 3Bs? = 0.
But s =t =0 (mod p) implies that

1 -2Ast —3Bs*=1#0 (mod p).
Therefore, t = ¢ is not tangent to the curve. |

If d = 0, then our line is of the form in the lemma. But it passes through
the points P; and Pj, so we must have P; = P}, and the line is tangent to the
curve. Changing back to x,y coordinates, we obtain P; = P». The definition
of the group law says that since the points P; and P, are equal, the line
ar + by + d = 0 is tangent at (x,y). As pointed out above, this means that
at + b+ ds = 0 is tangent at (s,t). The lemma says that this cannot happen.
Therefore, d # 0.

Dividing by d, we obtain

s=at+

for some «, 3 € Q. Then Pj, P, P; lie on the line s = at + (3.

LEMMA 8.5

B 3 4 t1ty + 13 + As3
1 — A(sy + s2)t1 — B(s3 + 5152 +52)

«

PROOF  Ift; # to, then a = (sp—s1)/(t2—t1). Since s; = t3+ As?t;+ Bs3,
we have

(s2—s1) (1 — A(s1 + s2)t1 — B(s3 + s152 + 57))
= (52— 1) — A(s3 — s1)t1 — B(s3 — )
— (59 — Assty — Bsy) — (51 — As?t; — Bs?) 4+ Asa(ty — t1)
=15 — 15 + As3(ty — 1)
= (tz - tl)(tg + t1t2 + t% + AS%)
This proves that (so — s1)/(t2 — t1) equals the expression in the lemma.
Now suppose that t; = t5. Since a line ¢t = ¢ with ¢ =0 (mod p) intersects

the curve s = t3 + As?t + Bs3 in only one point with s = 0 (mod p) by
Lemma 8.4, the points (s1,t1) and (s2,t2) must be equal. The line s = at +
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is therefore the tangent line at this point, and the slope is computed by implicit
differentiation of s = t3 + Ats? + Bs>:

ds 9 ds ds
= =312+ As®> + 2Ast— + 3Bs*—.
7 3t + As” 4+ 2As dt+3 s 7

Solving for ds/dt yields the expression in the statement of the lemma when
t1 =ty =t and s; = s9 = s.

Since s; = s9 =0 (mod p), we find that the denominator
1— A(s1 + s2)t1 — B(s3 + 5152 +s7) =1 (mod p).
Since p"|t;, we have
t3 4 tity +1t2 + As3 =0 (mod p?").
Therefore, « = 0 (mod p?"). Since p3|s;, we have
B=s—at;=0 (mod p*").

The point Pj is the third point of intersection of the line s = ot + 5 with
s = t3 + As’t + Bs3. Therefore, we need to solve for t:

at + 8 =13+ A(at + )%t + Blat + 3)°.

This can be rearranged to obtain

240 + 3Ba?f , n

0=1¢
+ 14+ Ba3 + Aa?

The sum of the three roots is the negative of the coefficient of 2, so

2Aaf3 + 3Ba?f3
t t t3 = —
LR = TR Aa?
=0 (mod p°").
The last congruence holds because p?"|a and p3"|3. Since t; = to = 0

(mod p"), we have t3 = 0 (mod p”). Therefore, s3 = at3 + 8 =0 (mod p3").
By Lemma 8.3, P3 € E,.. Moreover,

)\’I“(P]_) + )\T(Pg) + )\r(Pg) = p_T(tl + t2 + tg) =0 (mod p4T).

Therefore, A, is a homomorphism. This completes the proof of Theorem 8.1.

COROLLARY 8.6
Let the notations be as in Theorem 8.1. Ifn > 1 and n isnot a power of p,
then F; contains no points of exact order n. (See also Theorem 8.9.)
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PROOF Suppose P € FE; has order n. Since n is not a power of p, we
may multiply P by the largest power of p dividing n and obtain a point, not
equal to oo, of order prime to p. Therefore, we may assume that P has order
n with p{n. Let r be the largest integer such that P € E,.. Then

nA.(P) = A.(nP) = \(00) =0 (mod p*").

Since p t n, we have \.(P) = 0 (mod p?"), so P € Es,. Since 5r > r, this
contradicts the choice of r. Therefore, P does not exist. |

The following theorem was proved independently by Lutz and Nagell in the
1930s. Quite often it allows a quick determination of the torsion points on an
elliptic curve over Q. See Section 9.6 for another method.

THEOREM 8.7 (Lutz-Nagell)
Let E begiven by y? =23+ Az + Bwith A, B € Z. Let P = (z,y) € E(Q).
Suppose P has finite order. Then =,y € Z. Ify # 0 then

y*|4A% + 2782

PROOF Suppose x or y is not in Z. Then there is some prime p dividing
the denominator of one of them. By part (2) of Theorem 8.1, P € E, for
some r > 1. Let ¢ be a prime dividing the order n of P. Then Q = (n/¢)P
has order ¢. By Corollary 8.6, £ = p. Choose j such that Q € E;, Q € E;11.
Then \;(Q) # 0 (mod p), and

PA;(Q) =X (pQ) =0  (mod pY).
Therefore,
A(Q)=0 (mod p¥~1).

This contradicts the fact that A\;(Q) # 0 (mod p). It follows that =,y € Z.
Assume y # 0. Then 2P = (x3,y2) # oo. Since 2P has finite order,
x9,Y2 € Z. By Theorem 3.6,

x* — 2422 — 8Bx + A2
4qy2 '

Tro =
Since xo € Z, this implies that
y? |zt — 2Ax? — 8Bx + A%
A straightforward calculation shows that

(322 + 4A)(z* — 2A2* — 8Bx + A?) — (32 — 5Ax — 27B)(2® + Az + B)
= 4A® 4+ 27B*.
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Since y? = 23 + Ax + B, we see that y? divides both terms on the left.
Therefore, y?|4A3 + 27B2. i

COROLLARY 8.8
Let F ke an elliptic curve over Q. Then the torsion subgroup of F(Q) is
finite.

PROOF A suitable change of variables puts the equation for F into Weier-
strass form with integer coefficients. Theorem 8.7 now shows that there are
only finitely many possibilities for the torsion points.

Example 8.1

Let E be given by y? = 23 +4. Then 443 +27B? = 432. Let P = (z,y) be a
point of finite order in F(Q). Since 0 = 23 + 4 has no rational solutions, we
have y # 0. Therefore, y?[432, so

y=+1, +2, +3, +4, +6, +12.

Only y = £2 yields a rational value of x, so the only possible torsion points are
(0,2) and (0,—2). A quick calculation shows that 3(0,+2) = oco. Therefore,
the torsion subgroup of F(Q) is cyclic of order 3. I

Example 8.2

Let E be given by y? = 23 + 8. Then 443 + 27B% = 1728. If y = 0, then
x = —2. The point (—2,0) has order 2. If y # 0, then y?|1728, which means
that y|24. Trying the various possibilities, we find the points (1,+£3) and
(2,+4). However,

2(1,3) = (—7/4, —13/8) and 2(2,4) = (—7/4, 13/8).

Since these points do not have integer coordinates, they cannot have finite
order. Therefore, (1,3) and (2,4) cannot have finite order. It follows that the
torsion subgroup of E(Q) is {00, (—2,0)}. (Remark: The fact that 2(1,3) =
|:|—2(2,4) leads us to suspect, and easily verify, that (1,3) + (2,4) = (—2,0).)

Suppose we use the Lutz-Nagell theorem and obtain a possible torsion point
P. How do we decide whether or not it’s a torsion point? In the previous
example, we multiplied P by an integer and obtained a nontorsion point.
Therefore, P was not a torsion point. In general, the Lutz-Nagell theorem
explicitly gives a finite list of possibilities for torsion points. If P is a torsion
point, then, for every n, the point nP must either be oo or be on that list.
Since there are only finitely many points on the list, either we’ll have nP = mP
for some m # n, in which case P is torsion and (n — m)P = oo, or some
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multiple nP is not on the list and P is not torsion. Alternatively, we can use
Mazur’s theorem (Theorem 8.11 below), which says that the order of a torsion
point in F(Q) is at most 12. Therefore, if nP # oo for all n < 12, then P is
not torsion. Consequently, it is usually not hard to check each possibility in
the Lutz-Nagell theorem and see which ones yield torsion points. However,
sometimes the discriminant is hard to factor, and sometimes it contains many
factors. In this case, another algorithm can be used. See Section 9.6.

Another technique that helps us determine the torsion subgroup involves
reduction mod primes. The main result needed is the following.

THEOREM 8.9
Let F be an elliptic curve given by y? = 2% + Az + B with A, B € Z. Letp
ke an odd prim e and assum e p { 443 + 2782 . Let

o E(Q) — E(Fy)

ke the reduction mod p map. If P € F(Q) hasfinite order and p,(P) = oo,
then P = o0.

REMARK 8.10 In general, reduction mod a prime ideal containing p is
injective on the prime-to-p torsion in F(Q). This is similar to the situation
in algebraic number theory, where reduction mod a prime ideal containing p

is injective on roots of unity of order prime to p (see [129]).

PROOF By Theorem 8.7, all of the torsion points (other than oo) have
integral coordinates, so they reduce to well-defined finite points mod p. In
particular, oo is the only point that reduces to oco.

Example 8.3

Let’s use Theorem 8.9 to find the torsion on y? = 23 + 8. We have 443 +
27B? = 1728 = 2% .33, so we cannot use the primes 2,3. The reduction
mod 5 has 6 points, so Theorem 8.9 implies that the torsion in F(Q) has
order dividing 6. The reduction mod 7 has 12 points, so the torsion has order
dividing 12, which gives no new information. The reduction mod 11 has 12
points, so we again get no new information. However, the reduction mod 13
has 16 points, so the torsion in F(Q) has order dividing 16. It follows that
the torsion group has order dividing 2. Since (—2,0) is a point of order 2, the
torsion has order exactly 2. This is of course the same result that we obtained
earlier using the Lutz-Nagell theorem. I

Example 8.4
In the preceding example, the Lutz-Nagell theorem was perhaps at least as
fast as Theorem 8.9 in determining the order of the torsion subgroup. This is
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not always the case. Let E be given by y? = 23 4 18z + 72. Then
4A% +27B* = 163296 = 2° - 3° - 7.

The Lutz-Nagell theorem would require us to check all i with y?|163296, which
amounts to checking all y|108 = 22 . 33, Instead, the reduction mod 5 has 5
points and the reduction mod 11 has 8 points. It follows that the torsion
subgroup of F(Q) is trivial. 1

Finally, we mention a deep result of Mazur, which we will not prove (see
[77]).

THEOREM 8.11
Let F ke an elliptic curve defined over Q. Then the torsion subgroup of £(Q)
is one of the follbwing:

Z, withl1 <n <10 orn =12,
ZQ@ZQn w1ﬂ’11§n§4

REMARK 8.12 For each of the groups in the theorem, there are infinitely
many elliptic curves E (with distinct j-invariants) having that group as the
torsion subgroup of E(Q). See Exercise 8.1 for examples of each possibility.

8.2 Descent and the Weak Mordell-Weil Theo-
rem

We start with an example that has its origins in the work of Fermat (see
Section 8.6).

Example 8.5
Let’s look at rational points on the curve E given by

y? = z(z — 2)(z + 2).

If y = 0, we have x = 0, £2. Therefore, assume y # 0. Since the product of
x, x — 2, and x 4+ 2 is a square, intuition suggests that each of these factors
should, in some sense, be close to being a square. Write

2

T = au
x—2 = bv?
x+ 2 = cw?
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with rational numbers a, b, ¢, u, v, w. Then y? = abc(uvw)?, so

abc is a square.

By adjusting u,v,w, we may assume that a,b,c are squarefree integers. In
fact, we claim that
a,b,c € {£1,£2}.

Suppose that p is an odd prime dividing a. Since a is squarefree, p? { a, so
the exact power p* dividing © = au? has k odd. If k < 0, then p* is the
exact power of p in the denominator of z & 2, so p3* is the power of p in the
denominator of y? = x(x — 2)(x + 2). Since 3k is odd and y? is a square, this
is impossible. If £ > 0 then z =0 (mod p), so x =2 # 0 (mod p). Therefore,

¥ is the power of p dividing 2. Since k is odd, this is impossible. Therefore,
p 1 a. Similarly, no odd prime divides b or ¢. Therefore, each of a,b, ¢ is, up
to sign, a power of 2. Since they are squarefree, this proves the claim.

The procedure we are following is called descent, or, more precisely, a
2-descent. Suppose z is a rational number with at most N digits in its
numerator and denominator. Then w,v,w should have at most N/2 digits
(approximately) in their numerators and denominators. Therefore, if we are
searching for points (z,y), we can instead search for smaller numbers u, v, w.
This method was developed by Fermat. See Section 8.6.

We have four choices for a and four choices for b. Since a and b together
determine ¢ (because abc is a square), there are 16 possible combinations for
a,b,c. We can eliminate some of them quickly. Since z(z—1)(z+2) = y? > 0,
we have cw? = £+ 2 > 0, so ¢ > 0. Since abc > 0, it follows that a and b
must have the same sign. We are now down to 8 possible combinations.

Let’s consider (a,b,c) = (1,2,2). We have

r=u? z—-2=2% z+2=207
with rational numbers u, v, w. Therefore,
u? — 202 =2, u?—2uw?=-2.

If v has 2 in its denominator, then 2v? has an odd power of 2 in its denomi-
nator. But u? has an even power of 2 in its denominator, so u? — 2v? cannot
be an integer. This contradiction shows that v and u have odd denominators.
Therefore, we may consider u,v mod powers of 2. Since 2|u?, we have 2|u,
hence 4|u . Therefore, —2v% = 2 (mod 4), which implies that 2 { v. Similarly,
—2w? = —2 (mod 4), so 2t w. It follows that v? = w? =1 (mod 8), so

2=u? -2’ =u?-2=u?—20w?* = -2 (mod 8),

which is a contradiction. It follows that (a,b,c)

= (1,2,2) is impossible.
Similar considerations eliminate the combinations (—1, —

1,1), (2,1,2), and
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(—=2,—2,1) for (a,b,c) (later, we’ll see a faster way to eliminate them). Only
the combinations

(a,b,c) =(1,1,1), (—1,-2,2), (2,2,1), (—-2,-1,2)

remain. As we’ll see below, these four combinations correspond to the four
points that we already know about, namely,

oo, (0,0), (2,0), (—2,0)

(this requires some explanation, which will be given later). As we’ll see later,
the fact that we eliminated all combinations except those coming from known
points implies that we have found all points, except possibly points of odd
order, on the curve. The Lutz-Nagell theorem, or reduction mod 5 and 7
(see Theorem 8.9), shows that there are no nontrivial points of odd order.
Therefore, we have found all rational points on F:

E(Q) = {OO’ (0’0)7 (2’0)7 (_270)}'
[

The calculations of the example generalize to elliptic curves F of the form

y? = (z —e1)(z — e)(z — e3)

with eq,e2,e3 € Z and e; # e; when 7 # j. In fact, they extend to even more
general situations. If e; € Q but e; ¢ Z, then a change of variables transforms
the equation to one with e; € Z, so this situation gives nothing new. However,
if e; € Q, the method still applies. In order to keep the discussion elementary,
we’ll not consider this case, though we’ll say a few things about it later.
Assuming that z,y € Q, write
r— e = au?
T — ey = bv?

T —es = cw?

with rational numbers a, b, ¢, u, v, w. Then y? = abc(uvw)?, so
abc is a square.
By adjusting u, v, w, we may assume that a, b, ¢ are squarefree integers.

PROPOSITION 8.13
Let

S={p|p isprine and p|(e; — e2)(e1 —e3)(ea — e3)}.
Ifp is a prin e and plabc, then p € S'.
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PROOF  Suppose p|a. Then p¥, with k odd, is the exact power of p dividing
xz —e;. If k <0, then p* is the power of p in the denominator of  — e5 and
x — e3. Therefore, p3* is the power of p in the denominator of y?, which is
impossible. Therefore k£ > 0. This means that £ = e; (mod p). Also, x has
no p in its denominator, so the same is true of bv? = x — ey and cw? = x — e3.
Moreover, bv? = e; — e5 and cw? = e; —e3 (mod p). If p € S, then the power

of p in
¥ = (au?) (?) (cu?)

is pFpPpY = p¥. Since k is odd, this is impossible. Therefore, p € S. |

Since S is a finite set, there are only finitely many combinations (a,b,c)
that are possible. The following theorem shows that the set of combinations
that actually come from points (z,y) has a group structure modulo squares.

Let Q*/ QX2 denote the group of rational numbers modulo squares. This
means that we regard two nonzero rational numbers x1, x5 as equivalent if the
ratio x1/x9 is the square of a rational number. Every element of Q*/ Q><2
can be represented by £1 times a (possibly empty) product of distinct primes.
Note that if £ — e; = au?, then = — e; is equivalent to @ mod squares. There-
fore, the map ¢ in the following theorem maps a point (z,y) ¢ F[2] to the
corresponding triple (a, b, c).

THEOREM 8.14

Let E ke given by 42 = (2 —e1)(x — e2)(z — e3) with ey, ez,e3 € Z. Themap
¢: B(Q) - (Q*/Q%) @ (Q*/Q*") & (Q*/Q*")

defined by
(scy) — (x—e, x—ey, x—e3) wheny#0

— (1, 1, 1)

(e1, ) ((ex — 62)(61 —e3), el —ey, e —e3)
(e2,0) — (e2 —e1, (e —eq)(es —e3), es—e3)

(e3,0) — (es —e1, e3—ea, (e3—er)(es —e2))

is a hom om orphism . The kemelof ¢ is2E(Q).

PROOF First, we show that ¢ is a homomorphism. Suppose P; = (z;, y;),
t = 1,2,3, are points lying on the line y = ax + b. Assume for the moment
that y; # 0. The polynomial

(x —e1)(z —e2)(x — e3) — (az + b)?

has leading coefficient 1 and has roots x1, s, z3 (with the correct multiplici-
ties). Therefore,

(x —e1)(z —ex)(x —e3) — (az + b)? = (x — x1)(z — z2)(z — x3).
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Evaluating at e; yields

(1 — e;)(wo — e;) (23 — €;) = (ae; +b)? € Qx>

Since this is true for each 1,

S(P)(Po)d(Ps) =1€ Q4/Q*% & Q< /Q** & Q% /Q**

(that is, the product is a square, hence is equivalent to 1 mod squares). Since
any number z is congruent to its multiplicative inverse mod squares (that is,
z equals 1/z times a square),

G(P3) " = ¢(P3) = ¢(—Ps).

Therefore,

¢(P1)p(P2) = ¢(—P3) = ¢(P1 + ).

To show that ¢ is a homomorphism, it remains to check what happens when
one or both of Py, P, is a point of order 1 or 2. The case where a point P; is of
order 1 (that is, P, = 00) is trivial. If both P, and P, have order 2, a case by
case check shows that ¢(P; + P») = ¢(P1)¢(P). Finally, suppose that P; has
order 2 and P, has y, # 0. Let’s assume P; = (e1,0). The other possibilities
are similar. Since the values of ¢ are triples, let ¢1, @2, @3 denote the three
components of ¢ (so ¢ = (¢1, P2, ¢3)). The proof given above shows that

¢i(P1)di(P2) = ¢i(P1 + Pa)

for ¢ = 2,3. So it remains to consider ¢;.

By inspection, ¢1(P)p2(P)¢ps(P) = 1 for all P. Since ¢;(P1)o;(P2) =
¢i(Py + Py) for i = 2,3, the relation holds for ¢ = 1, too. Therefore, ¢ is a
homomorphism.

Putting everything together, we see that ¢ is a homomorphism.

To prove the second half of the theorem, we need to show that if x — e; is
a square for all 4, then (x,y) = 2P for some point P € E(Q). Let

r—e; =07, i=1,23.

For simplicity, we’ll assume that e; 4+ es + e3 = 0, which means that the
equation for our elliptic curve has the form y? = 23+ Ax+B. (If e; +ey+e3 #
0, the coefficient of 22 is nonzero. A simple change of variables yields the
present case.) Let

f(T) = Up + UlT —|— u2T2

satisfy
f(ez) = Vs, 1= 1,2,3.
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Such an f exists since there is a unique quadratic polynomial whose graph
passes through any three points that have distinct z-coordinates. In fact

1

f(T) =1 (el _ 62)(61 — 63) (T - 62)(T - 63)
1

For e S (T e)(T — )

+ vs (T—el)(T—eg).

(e3 —e1)(es — e2)
Let g(T) = 2 — T — f(T)%. Then g(e;) = 0 for all i, so
T3+ AT 4+ B = (T — e))(T — e3)(T — e3) divides g(T).
Therefore, g(T) =0 (mod T3 + AT + B), so
r—T = (ug+wuT +usT?)? (mod T° + AT + B).

(We say that two polynomials Pj, P, are congruent mod Ps if P — P; is a
multiple of P3.) This congruence for z — T can be thought of as a way of
simultaneously capturing the information that xz — e; is a square for all 7.
Mod T2 + AT + B, we have

T3=—-AT—-B, T*=T -T3=—-AT? - BT.
Therefore,

z—T = (ug +u T + uaT?)?
= u% + 2uou T + (u% + 2u0u2)T2 + 2uqus T + u§T4
(u% — 2Bujug) + (2uouy — 2Auqug — Bug)T

+(uF + 2uoug — Aud)T?.

If two polynomials P; and P, of degree at most two are congruent mod a
polynomial of degree three, then their difference P; — P> is a polynomial of
degree at most two that is divisible by a polynomial of degree three. This can
only happen if P, = P,. In our case, this means that

r = ud — 2Bujus (8.1)
—1 = 2upuy — 2Auyus — Buj (8.2)
0 = ul + 2ugug — Auj. (8.3)

If ug = 0 then (8.3) implies that also u; = 0. Then f(T") is constant, so
v1 = vo = w3. This means that e; = ey = e3, contradiction. Therefore,
us # 0. Multiply (8.3) by u; /u3 and multiply (8.2) by 1/u3, then subtract to

obtain
1 2 U1 3 (A1
() = (@) =2 () o
U (15 Uo
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Let
U1 1
Tl = —, = —
U2 U2

so (z1,11) € E(Q). We claim that 2(x1,y1) = +(z,y).
Equation 8.3 implies that
 Auz—ui A—ai

vo = QUQ - 2y1

Substituting this into (8.1) yields

r} — 2Ax? — 8By + A?
xr = 5 .
4y1

This is the z-coordinate of 2(z1,y1) (see Theorem 3.6). The y-coordinate is
determined up to sign by the z-coordinate, so 2(x1,y1) = (x, ty) = £(z,y).
It follows that (z,y) = 2(x1,y1) or 2(x1, —y1). In particular, (z,y) € 2E(Q).

Example 8.6
We continue with Example 8.5. For the curve y? = x(z — 2)(x + 2), we have

¢(OO) = (17 L, 1)7 ¢(070) = (_17 _272)7
¢(2,0) = (2, 2, 1), ¢(—2,0) = (—2, —1,2)

(we used the fact that 4 and 1 are equivalent mod squares to replace 4 by 1).
We eliminated the triple (a,b,c) = (1,2,2) by working mod powers of 2. We
now show how to eliminate (—1,—-1,1),(2,1,2),(—2,—2,1). Suppose there is
a point P with ¢(P) = (—1,—1,1). Then

o(P+(0,0)) = ¢(P)9(0,0) = (—1,-1,1)(—1,-2,2) = (1,2,2).

But we showed that (1,2,2) does not come from a point in £(Q). Therefore,
P does not exist. The two other triples are eliminated similarly.

Theorem 8.14 has a very important corollary.

THEOREM 8.15 (Weak Mordell-Weil Theorem)
Let F e an elliptic curve defined over Q. Then

E(Q)/2E(Q)

is finite.

PROOF We give the proof in the case that ej, ez, e3 € Q. As remarked
earlier, we may assume that eq, ez, es € Z. The map ¢ in Theorem 8.14 gives
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an injection

E(Q)/2E(Q) — (Q*/Q"*) & (Q*/Q*%) & (Q*/Q*?).

Proposition 8.13 says that if (a,b, c) (where a, b, c are chosen to be squarefree
integers) is in the image of ¢, then a, b, c are products of primes in the set S
of Proposition 8.13. Since S is finite, there are only finitely many such a, b, c
mod squares. Therefore, the image of ¢ is finite. This proves the theorem.

REMARK 8.16 (for those who know some algebraic number theory) Let
K/Q be a finite extension. The theorem can be extended to say that if F
is an elliptic curve over K then F(K)/2E(K) is finite. If we assume that
23+ Az + B = (v —e1)(x — e3)(x — e3) with all e; € K, then the proof is the
same except that the image of ¢ is contained in

(KX /K%y & (K* [K*") & (K> [K*7).

Let Ok be the ring of algebraic integers of K. To make things simpler, we
invert some elements in order to obtain a unique factorization domain. Take
a nonzero element from an integral ideal in each ideal class of Ok and let M
be the multiplicative subset generated by these elements. Then M 1Ok is a
principal ideal domain, hence a unique factorization domain. The analogue of
Proposition 8.13 says that the primes of M ~'Og dividing a, b, ¢ also divide
(e1 —ea)(er —e3)(ea —e3). Let S € M~1Oxk be the set of prime divisors of
(e1 — ez)(e1 — e3)(ea — e3). Then the image of ¢ is contained in the group
generated by S and the units of M ~'Ogk. Since the class number of K is
finite, M is finitely generated. A generalization of the Dirichlet unit theorem
(often called the S-unit theorem) says that the units of M 1Oy are a finitely
generated group. Therefore, the image of ¢ is a finitely generated abelian
group of exponent 2, hence is finite. This proves that E(K)/2F(K) is finite.

8.3 Heights and the Mordell-Weil Theorem

The purpose of this section is to change the weak Mordell-Weil theorem
into the Mordell-Weil theorem. This result was proved by Mordell in 1922 for
elliptic curves defined over Q. It was greatly generalized in 1928 by Weil in
his thesis, where he proved the result not only for elliptic curves over number
fields (that is, finite extensions of Q) but also for abelian varieties (higher-
dimensional analogues of elliptic curves).
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THEOREM 8.17 (Mordell-Weil)
Let F ke an elliptic curve defined over Q. Then F(Q) is a finitely generated
abelian group.

The theorem says that there is a finite set of points on E from which all
other points can be obtained by repeatedly drawing tangent lines and lines
through points, as in the definition of the group law. The proof will be given
below. Since we proved the weak Mordell-Weil theorem only in the case that
E[2] C E(Q), we obtain the theorem only for this case. However, the weak
Mordell-Weil theorem is true in general, and the proof of the passage from
the weak result to the strong result holds in general.

From the weak Mordell-Weil theorem, we know that E(Q)/2E(Q) is fi-
nite. This alone is not enough to deduce the stronger result. For example,
R/2R = 0, hence is finite, even though R is not finitely generated. In our
case, suppose we have points Ry, ..., R, representing the finitely many cosets
in £(Q)/2E(Q). Let P € E(Q) be an arbitrary point. We can write

P=R,+2P
for some 7 and some point P;. Then we write
Py = R; + 2P,

etc. If we can prove the process stops, then we can put things back together
and obtain the theorem. The theory of heights will show that the points
Py, P, ... are getting smaller, in some sense, so the process will eventually
yield a point Py, that lies in some finite set of small points. These points, along
with the R;, yield the generators of F(Q). We make these ideas more precise
after Theorem 8.18 below. Note that sometimes the points R; by themselves
do not suffice to generate £(Q). See Exercise 8.7.
Let a/b be a rational number, where a,b are integers with ged(a,b) = 1.
Define
H(a/b) = Max(lal, |b])

and

h(a/b) = log H(a/b).

The function h is called the (logarithmic) height function. It is closely
related to the number of digits required to write the rational number a/b.
Note that, given a constant c, there are only finitely many rational numbers
x with h(z) < c.

Now let E be an elliptic curve over Q and let (z,y) € E(Q). Define

h(z,y) = h(z), h(co) =0, H(z,y)=H(x), H(oco)=1.

It might seem strange using only the z-coordinate. Instead, we could use
the y-coordinate. Since the square of the denominator of the y-coordinate is
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the cube of the denominator of the xz-coordinate (when the coefficients A, B
of E are integers), it can be shown that this would change the function h
approximately by a factor of 3/2. This would cause no substantial change in
the theory. In fact, the canonical height h, which will be introduced shortly,
is defined using a limit of values of %h. It could also be defined as a limit of
values of 1/3 of the height of the y-coordinate. These yield the same canonical
height function. See [109, Lemma 6.3]. The numbers 2 and 3 are the orders
of the poles of the functions z and y on E (see Section 11.1).

It is convenient to replace h with a function h that has slightly better
properties. The function h is called the canonical height.

THEOREM 8.18
Let F e an elliptic curve defined over Q. There is a function

h:B(Q) — Rxg
with the follow ing properties:
1. h(P)>0 forallP € E(Q).
2. There is a constant ¢y such that |2h(P) — h(P)| < ¢y orall P.

3. G iven a constant ¢, there are only finitely m any points P € E(Q) with
h(P) < c.

4. h(mP) = m2h(P) for all integers m and all P.

(P + Q)+ h(P — Q) =2h(P) + 2h(Q) rallP,Q.

U1

6. h(P) =0 ifand only if P is a torsion point.

Property (5) is often called the parallelogram law because if the origin
0 and vectors P,Q, P + @ (ordinary vector addition) are the vertices of a
parallelogram, then the sum of the squares of the lengths of the diagonals
equals the sum of the squares of the lengths of the four sides:

1P+ QII* + IP — QII* = 2[|PII* + 2|QlI.

The proof of Theorem 8.18 will occupy most of the rest of this section. First,
let’s use the theorem to deduce the Mordell-Weil theorem.
P roof of the M ordell-W eil theorem : Let Rq,..., R, be representatives for

E(Q)/2E(Q). Let A
C = Ma,xz{h(RZ)}

and let Q1,...,Q,, be the set of points with B(QZ) < ¢. This is a finite set by
Theorem 8.18. Let G be the subgroup of F(Q) generated by

Rla"'aRn7Q17"'7Qm'
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We claim that G = E(Q). Suppose not. Let P € E(Q) be an element not
in GG. Since, for a point P, there are only finitely many points of height less
than P, we may change P to one of these, if necessary, and assume P has the
smallest height among points not in G. We may write

P—-—R;,=2P

for some ¢ and some P;. By Theorem 8.18,

4h(Py) = h(2Py) = h(P — R;)
:2}3( ) + 2h(R;) — h(P + R;)
< 2h (P)+2c+0
< 2h(P) + 2h(P) = 4h(P)

(since ¢ < h(P), because P # @Q;). Therefore,
h(Py) < h(P).

Since P had the smallest height for points not in G, we must have P; € G.
Therefore,

P=R;,+2P, €G.
This contradiction proves that F(Q) = G. This completes the proof of the

Mordell-Weil theorem. i
It remains to prove Theorem 8.18. The key step is the following.

PROPOSITION 8.19
T here exists a constant ¢; such that

[h(P + Q)+ h(P — Q) - 2h(P) = 20(Q)| < 1
orallP,Q € E(Q).

The proof is rather technical, so we postpone it in order to complete the
proof of Theorem 8.18.

Proof of Theorem 8.18:

Proof of parts (1) and (2): Letting @ = P in Proposition 8.19, we obtain

|h(2P) — 4h(P)| < 1 (8.4)
for all P. Define 1 !
h(P)= = lim —h(2"P).

n—oo 4m

We need to prove the limit exists. We have

n - 1 j—1
n11_>1204—h(2P 24— h(2'P) — 4h(2771P)). (8.5)
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By (8.4),
1

‘— (27 P) — 4h(27~ 1P))‘ <o

so the infinite sum converges. Therefore, h(P) exists. Since

> -
J=1

we obtain | (P)— Sh(P)| < ¢1/6. It is clear from the definitions that h(P) >0
for all P.

Proof of part (3): If fc(P) < ¢, then h(P) < 2c+ 4. There are only finitely
many P satisfying this inequality.

P roof of part (5): We have

e

4%|h(2”P +27Q) + h(2"P — 2"Q) — 2h(2"P) — 2h(2"Q)| < <L

Letting n — oo yields the result.
Proof of part (4): Since the height depends only on the z-coordinate,

h(—P) = h(P). Therefore, we may assume m > 0. The cases m = 0,1
are trivial. Letting @) = P in part (5) yields the case m = 2. Assume that we
know the result for m — 1 and m. Then

h((m +1)P) = —h((m — 1)P) + 2h(mP) + 2h(P) (by part (5))
= (—(m —1)? +2m? + 2) h(P)
= (m + 1)%h(P).
By induction, the result is true for all m. X X
Proof of part (6): If mP = oo, then m?h(P) = h(mP) = h(c) = 0, so
h(P) = 0. Conversely, if h(P) = 0, then h(mP) = m?h(P) = 0 for all m.
Since there are only finitely many points of height 0, the set of multiples

of P is finite. Therefore, P is a torsion point. This completes the proof of
Theorem 8.18.

P roof of Proposition 8.19. It remains to prove Proposition 8.19. It can be
restated as saying that there exist constants ¢/, ¢” such that

2h(P) 4+ 2h(Q) — ¢ < h(P+ Q)+ h(P - Q) (8.6)
h(P+ Q)+ h(P — Q) <2h(P)+2h(Q) + " (8.7)
for all P, Q. These two inequalities will be proved separately. We’ll start with

the second one.
Let the elliptic curve E be given by y* = 23 + Az + B with A, B € Z. Let

P = (Zi?yl) Q:(%ayQ)a
P+Q (b 7y3)7 _Q ( ay4)
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be points on E, where y; € Q and a;, b; are integers with ged(a;, b;) = 1. Let

g1 = 2(a1ba + agby)(Abiby + ayas) + 4Bb3b3
g2 = (a1as — Ab1b2)2 — 4B(a1bs + a2by )by by
g3 = (aiby — a251)2-
Then a short calculation shows that

az a4 41 aszay g2

by by g3 bsbs g3’

LEMMA 8.20
Letcy,co,dy,do € Z. Then

Max(|c1], |d1]) - Max(|ez], |d2|) < 2Max(|cica|, |c1da + cadi], |dida]).
PROOF Without loss of generality, we may assume that |c;| < |d;| (other-

wise, switch ¢1,dy). Let L denote the left side of the inequality of the lemma
and let R denote the right side. There are three cases to consider.

1. If |CQ| S |d2|, then L = |d1d2| and 2|d1d2| S R, so L S R.
2. If |eo| > |d2] > (1/2)]cz], then L = |djcs| and

R Z 2|d1d2| 2 |d102| Z L.

3. If |da| < (1/2)|ea|, then L = |dico| and

R > 2|cidy + cody|
> 2(|eadr| — [e1da])
> 2(|ezdr| — [d1[(1/2)]e2l)
= |cody| = L.

This completes the proof of the lemma. |

LEMMA 8.21
Letcy, co,dy,ds € Z with ged(c;,d;)) =1 fori=1,2. Then

ng(ClcQ, Cldg =+ ngl, dldg) = 1.
PROOF Let d = ged(cida + cody, dids). Suppose p is a prime such that
pler and pld. Then p { d; since ged(cq,dy) = 1. Since p|dida, we have p|ds.

Therefore, p { co. Therefore, p|cids and p { cady, so p 1 c1ds + cady. Therefore
p 1 d, contradiction. Similarly, there is no prime dividing both ¢y and d. It
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follows that there is no prime dividing cyco and d, so the ged in the lemma is

R |

We can apply the lemmas to ag,aq,bs,bs. Since ged(as,bs) = 1 and
ged(ag, by) = 1, we have

gcd(a3a4, a3b4 + a4b3, b3b4) =1.
Therefore, there exist integers x, ¥y, z such that
asaqx + (a3b4 + a4b3)y + b3b42 =1.
Since
g3(azbs + asbz) = g1(bsbs) and gs(azas) = g2(bsba), (8.8)
we have
g3 = g3(azaq)x + gz(azbs + asbs)y + g3(b3bs)z
= g2(b3bs)x + g1(b3bs)y + g3(b3bs)z.
Therefore, bsbs|gs, so
|b3ba| < [g3].
Similarly,
|azas| < |gal.
Equation 8.8 and the fact that |bsby| < |g3| imply that
lazby + asbs| < |g1].
In terms of the nonlogarithmic height H, these inequalities say that
H(P+Q)-H(P — Q) = Max(|as|, [bs]) - Max([aa], |b4])
S 2Max(|a3a4|, |CL3b4 + a4b3|, |b3b4|)
< 2Max(|g2l, 911, 93])-

Let H1 = Max(\a1|, |b1|) and H2 = Max(|a2], |b2|) Then

91| = |2(a1bg + azb1)(Abiby + araz) + 4Bb7b3]
< 2(H\Hy + HyH\)(|A|H\Hy + H,Hy) + 4|B|H{ H;
< 4(|A|+ 1+ |B|)H{Hj.

Similarly,
l92] < (L +A|)? +8|B)HTHS, 93| < AHTHS.
Therefore,

H(P+Q)-H(P-Q) <CH{H; = CH(P)’H(Q)?
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for some constant C. Taking logs yields
h(P+ Q)+ h(P — Q) < 2h(P) + 2h(Q) + " (8.9)

for some constant ¢”.
We now need to prove the inequality in (8.6). First we’ll prove an inequality
between h(R) and h(2R) for points R.

LEMMA 8.22
Let R € E(Q). There exists a constant (3, independent of R, such that
4h(R) < h(2R) + Cs.
PROOF Let a
R=(—+
( b ) y)
with y € Q and a,b € Z with ged(a,b) = 1. Let

hi = a* — 24ab® — 8Bab® + A%b*
hy = (4b)(a® + Aab® + Bb?)
A = 4A3 + 27B2.

By Lemma 3.8, there exist homogeneous polynomials 1,79, s1, s2 € Z[a, b] of
degree 3 (the coefficients depend on A, B) such that

AN = rihi1 4+ rohs (810)
4ACL7 = 81h1 + Sghg. (811)

For a homogeneous polynomial
p(z,y) = cor® + c1a’y + coxy® + csy’,

we have
Ip(a,b)| < (ol + [e1] + |e2| + |es|)Max(|al, [b])*.

Suppose |b| > |al|. It follows that

[4A[[b]” < |ri(a,b)||h1] + |r2(a, b)||he]
< C1|bP*Max(|h], |ha]),

for some constant C; independent of R. Therefore,
[4A|[p[* < CiMax(|ha, [hal).
Let d = ged(hi, ha). Then (8.10) and (8.11) imply that

d|4Ab7 and d|4Ad”.
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Since ged(a,b) = 1, we have d|4A, so d < |[4A|. Since

|h1| |h2|
H(2R) = Max | — . ——
( ) ( l ) l )

we have

[4AH(R)* = [4A[o]*
< CiMax(|ha|, [hel)
hi| |h
< 0y a2l 12l
< C44A|H (2R).
Dividing by |[4A| and taking logs yields
4h(R) < h(2R) + Cs

for some constant Cs, independent of R.
The case where |a| > |b| is similar. This completes the proof of Lemma 8.22.
i

Changing P to P+ @ and @ to P — @ in (8.9) yields
h(2P) + h(2Q) < 2h(P 4+ Q) + 2h(P — Q) + ¢".
By Lemma 8.22,

4h(P) + 4h(Q) — 2C < h(2P) + h(2Q).

Therefore,

2h(P) +2h(Q) — ¢ < h(P + Q) + h(P - Q)
for some constant ¢’. This completes the proof of Proposition 8.19. |
=

8.4 Examples

The Mordell-Weil theorem says that if E is an elliptic curve defined over
Q, then E(Q) is a finitely generated abelian group. The structure theorem
for such groups (see Appendix B) says that

EQ) ~TeZ,

where T is a finite group (the torsion subgroup) and r > 0 is an integer,
called the rank of F(Q). In Section 8.1, we showed how to compute 7.
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The integer r is harder to compute. In this section, we show how to use the
methods of the previous sections to compute r in some cases. In Section 8.8,

we’ll give an example that shows why the computation of r is sometimes
difficult.

Example 8.7

Let F be the curve

y? =2 — 4z,

In Section 8.2, we showed that

(more precisely, the points on the right are representatives for the cosets on
the left). Moreover, an easy calculation using the Lutz-Nagell theorem shows
that the torsion subgroup of E(Q) is

T = E[2].
From Theorem 8.15, we have E(Q) ~T @& Z", so
E(Q)/2E(Q) ~ (T/)2T)® Z5 =T & Zi,.
Since F(Q)/2E(Q) has order 4, we must have r = 0. Therefore,

E(Q) = E[2] = {OO, (07 O)’ (270)a (_27 O)}

Example 8.8
Let E be the curve
y? =23 — 25z.

This curve E appeared in Chapter 1, where we found the points
(O> O): (57 O)v (_57 O)v (_47 6)'
We also calculated the point

412 —62279

2(=4,6) = (153 1728

).
Since 2(—4,6) does not have integer coordinates, (—4,6) cannot be a torsion

point, by Theorem 8.7. In fact, a calculation using the Lutz-Nagell theorem
shows that the torsion subgroup is

T = {0, (0,0), (5,0), (—5,0)} ~ Zo & Zo.
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We claim that

We know that the rank r is at least 1, because there is a point (—4,6) of
infinite order. The problem is to show that the rank is exactly 1.
Consider the map

61 E(Q — (Q/Q%) & (Q*/Q") & (Q*/Q*")
of Theorem 8.14 defined by
(z,y) — (x, z — 5, x +5)
when y # 0. Therefore,
$(—4,6) = (-1,-1,1),

where we have used the fact that —4 and —9 are equivalent to —1 mod squares.
Also, from Theorem 8.14,

¢(o0) = (1,1,1)
$(0,0) = (—1,-5,5)
¢(5,0) = (5,2, 10)

#(—5,0) = (-5, —-10,2).

Since ¢ is a homomorphism, we immediately find that ¢(—4,6) times any of
these triples is in the image of ¢, so

(1,5,5), (—5,—2,10), (5, 10, 2)

correspond to points.

If we write
x = au’
x—5 = by’
T+5 = cw?,

we have ¢(x,y) = (a, b, c). From Proposition 8.13, we may assume
a,b,c € {£1,£2,£5, £10}.

Also, abc is a square, so ¢ is determined by a, b. Therefore, we’ll often ignore
¢ and concentrate on the possibilities for a,b. There are 64 possible pairs a, b.
So far, we have 8 pairs that correspond to points. Let’s record them in a list,
which we’ll refer to as L in the following:

L=1{(1,1),(1,5),(=1,-1),(=1,=5), (5,2), (5,10), (=5, —2), (=5, —10)}.
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Our job is to eliminate the remaining 56 possibilities.
Observe that

r—5=W’<z=au®<z+5=cw’
If a <0, then b < 0. If @ > 0 then ¢ > 0, hence b > 0 since abc is a square.
Therefore, a and b have the same sign. This leaves 32 possible pairs a, b.
We now consider, and eliminate, three special pairs a,b. The fact that
¢ is a homomorphism will then suffice to eliminate all but the eight pairs

corresponding to known points.
(a,b)=(2,1). We have

x = 2u?
r—5 =0’
x4+ 5= 2>

Therefore,
2u? —v? =5, 2uw?—2u®=5.

If one of u or v has an even denominator, then so does the other. However,
242 has an odd power of 2 in its denominator, while v? has an even power
of 2 in its denominator. Therefore, 2u? — v? is not an integer, contradiction.
It follows that u,v have odd denominators, so we may work with them mod
powers of 2. Since v> = —5 (mod 2), we must have v odd. Therefore, v? = 1
(mod 8), so
2u> =6 (mod 8).
This implies that u? = 3 (mod 4), which is impossible. Therefore, the pair
(a,b) = (2,1) is eliminated.
(a,b)=(5,1). We have

x = 5u?
x—5=1>
x+5 = 5w

Therefore,
5u? —v? =5, 5w? —5u® =5.

If the denominator of one of u or v is divisible by 5, then so is the other.
But 5u? then has an odd power of 5 in its denominator, while v? has an even
power of 5 in its denominator. This is impossible, so the denominators of
both u and v are not divisible by 5. Since w? —u? = 1, the same holds for w.
Therefore, we can work with u,v,w mod 5. We have v = 0 (mod 5), so we
can write v = 5vy. Then

u? — 50 =1,

so u? =1 (mod 5). Therefore, w? =1+ u? =2 (mod 5). This is impossible.
Therefore, the pair (a,b) = (5,1) is eliminated.
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(a,b)=(10, 1). We have

x = 10u?
r—5 =0’
z+5 = 10w?.

Therefore,
10u? — 0?2 =5, 10w? — 10u? = 5.

As before, the denominators of u, v, w are not divisible by 5. Write v = 5v;.
Then 2u? — 5v7 = 1, so 2u®> = 1 (mod 5). This is impossible, so the pair
(a,b) = (10,1) is eliminated.

The pairs (a,1) with a < 0 are eliminated since a,b must have the same
sign. Therefore, (1,1) = ¢(o0) is the only pair of the form (a, 1) corresponding
to a point.

Let (a,b) be any pair. There is a point P with ¢(P) = (a’,b) on the list L
for some a’. If there is a point @ with ¢(Q) = (a,b), then

¢(P—Q) = (a,b)(a,b)™" = (a”,1)
for some a”. We showed that (a”,1) is not in the image of ¢ when a” # 1.
Therefore, a”’ = 1, so a = o’ and (a,b) = (a’,b) = ¢(P). Consequently, the
only pairs in the image of ¢ are those on the list L.
As stated above, the torsion subgroup of E(Q) is E[2], so

E(Q)/2E(Q) ~Zy ©Zy DLy

for some r. Since the image of ¢ has order 8 and the kernel of ¢ is 2F(Q),
the order of £(Q)/2E(Q) is 8. Therefore, r = 1. This implies that

Note that we have also proved that E[2] and (—4,6) generate a subgroup of
E(Q) of odd index. It can be shown that they actually generate the whole
group. This would require making the constants in the proof of Theorem 8.17

more explicit, then finding all points with heights less than an explicit bound
to obtain a generating set.

Silverman [110] proved the following.

THEOREM 8.23
Let F e defined over Q by the equation

v =23+ Az + B
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with A, B € Z. Then
L) — Lha) - 0973 < h(P) — Lh(P)
D o= 2
1 1
< —h(j) + —h(A) + 1.
< 12h(])+ 12h( )+ 1.07
forallP € E(Q). Here A = —16(4A3 4+ 27B?%) and j = —1728(4A4)3/A.

For the curve y? = 23 — 252, we have A = 10% and j = 1728. Therefore,
~ 1
—3.057 < h(P) — éh(P) < 2.843

for all P € E(Q). The points (0,0), (5,0),(—5,0),(—4,6) generate the group
E(Q)/2E(Q). The first three of these points have canonical height 0 since
they are torsion points. The point (—4,6) has canonical height 0.94974. ..
(this can be calculated using the series (8.5)). The proof of Theorem 8.17
shows that the points with canonical height at most 0.94974... generate
E(Q). Theorem 8.23 says that such points have noncanonical height h(P) <
8.02. Since %92 ~ 3041, the nonlogarithmic height of the z-coordinate is at
most 3041. Therefore, we need to find all points (x,y) € E(Q) such that

x = % with Max(|al, |b]) < 3041.

It is possible to find all such points using a computer. The fact that the
denominator of x must be a perfect square can be used to speed up the
search. We find the points

0,0), (=5,0), (5,0), (—4,6)
45,-300) = (—5,0) + (—4, 6)

25/4, 75/8) = (0,0) + (—4,6)

~5/9, —100/27) = (5,0) + (—4,6)
(1681/144, —62279/1728) = 2(—4, 6)

N /N I/

and the negatives of these points. Since these points generate E(Q), we
conclude that (0,0), (5,0),(—5,0),(—4,6) generate E(Q).

REMARK 8.24 In Chapter 1, we needed to find an x such that x, x — 5,
and z 4 5 were all squares. We did this by starting with the point (—4,6) and
finding the other point of intersection of the tangent line with the curve. In
effect, we computed

412 —62279

1227 1728 )

and miraculously obtained z = 412/122 with the desired property. We now
see that this can be explained by the fact that ¢ is a homomorphism. Since

2(—4,6) = (
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»(2P) = (1,1,1) for any point P, we always obtain an x such that x, z — 5,
and x+5 are squares when we double a point on the curve y? = z(x—5)(z+5).

Example 8.9
One use of descent is to find points on elliptic curves. The idea is that in the
equations

T — e = au’

T — ey = bv?

T —e3 = cw?,
the numerators and denominators of u, v, w are generally smaller than those
of x. Therefore, an exhaustive search for u, v, w is faster than searching for x
directly. For example, suppose we are looking for points on

y? =23 — 36z.
One of the triples that we encounter is (a,b,c) = (3,6,2). This gives the
equations
r = 3u?
zr—6 = 602
z 46 = 2w?.

These can be written as
3u? —6v? =6, 2w?—3u’=6,

which simplify to
w2 — 202 =2, 2uw?—3u®=6.

A quick search through small values of u yields (u,v,w) = (2,1, 3). This gives
(z,y) = (12, 36).

Note that the value of u is smaller than z. Of course, we are lucky in this
example since the value of u turned out to be integral. Otherwise, we would
have had to search through values of v with small numerator and small de-
nominator.

The curve y? = 23— 36z can be transformed to the curve y? = z(z+1)(2z+
1)/6 that we met in Chapter 1 (see Exercise 1.5). The point (1/2,1/2) on
that curve corresponds to the point (12,36) that we found here.

Example 8.10

The elliptic curves that we have seen up to now have had small generators
for their Mordell-Weil groups. However, frequently the generators of Mordell-
Weil groups have very large heights. For example, the Mordell-Weil group of

© 2008 by Taylor & Francis Group, LLC



230 CHAPTER 8 ELLIPTIC CURVES OVER Q

the elliptic curve (see [76])
y? = 23 — 59643
over @ is infinite cyclic, generated by

62511752209 15629405421521177
9922500 31255875000

(there are much larger examples, but the margin is not large enough to contain
them). This curve can be transformed to the curve u® + v = 94 by the
techniques of Section 2.5.2. I

8.5 The Height Pairing

Suppose we have points Py, ..., P, that we want to prove are independent.
How do we do it?

THEOREM 8.25 R
Let E be an elliptc curve defined over Q and ket h ke the canonical height
finction. For P, Q € E(Q), define the height pairing

(P,Q) = h(P + Q) — h(P) — h(Q).

Then (, ) is bilnear n each variabke. If Py, ..., P, are points In £(Q), and
the r X r determ inant
det((Ps, Py)) 0,

then P;,..., P, are independent (that is, if there are integers a; such that
a1Py+---+a.P. =00, then a; =0 foralli).

PROOF The second part of the theorem is true for any bilinear pairing.
Let’s assume for the moment that the pairing is bilinear and prove the second
part. Suppose a1P; + --- + a,.P. = oo, and a, # 0, for example. Then a,
times the last row of the matrix (P;, P;) is a linear combination of the first
r — 1 rows. Therefore, the determinant vanishes. This contradiction proves
that the points must be independent.

The proof of bilinearity is harder. Since the pairing is symmetric (that is,
(P,Q) = (Q, P)), it suffices to prove bilinearity in the first variable:

(P+Q,R)=(P,R)+ (Q,R).

Recall the parallelogram law:

A~

h(S +T) + h(S —T) = 2h(S) + 2h(T).
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Successively letting (S,7) = (P + Q, R), (P,Q — R), (P + R,Q), and (Q, R)
yields the following equations:

h(P+Q+ R)+h(P+Q— R) = 2h(P + Q) + 2h(R)
2h(P) + 2h(Q — R) = h

MP+R+Q)+h(P+R-Q)=2

4h(Q) + 4h(R) = 2

Adding together all of these equations yields
2 (E(P YQ+R)—h(P+Q)— E(R))

— 9 (ﬁ(P +R) — h(P) — h(R) + M(Q + R) — h(Q) — z}(R)) .
Dividing by 2 and using the definition of the pairing yields the result. 1
Example 8.11

Let E be given by y? = 2% + 73. Let P = (2,9) and Q = (3,10). Then

(P,P)y = 10.9239...

(P,Q) =—0.9770...

(Q,Q) = 1.9927....
Since

0.9239 —0.9770
det (_0,9770 1.9927) — 0.8865--- #£ 0,

the points P and () are independent on FE. I

8.6 Fermat’s Infinite Descent

The methods in this chapter have their origins in Fermat’s method of
infinite descent. In the present section, we’ll give an example of Fermat’s
method and show how it relates to the calculations we have been doing.

Consider the equation

a* + bt =2 (8.12)

The goal is to show that it has no solutions in nonzero integers a, b, c. Recall
the parameterization of Pythagorean triples:
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PROPOSITION 8.26
Suppose ., Y, 2 are relhtively prim e positive ntegers such that

x2+y2 = 22
Then one of z,y is even. Suppose it is x. Then there exist positive Integers
m,n such that

T = 2mn, y:mg—nQ, z=m?+n>

M oreover, ged(m,n) =1 and m #n (mod 2).

This result is proved in most elementary number theory texts. Alternatively,
see Exercise 2.21.

Suppose now that there are nonzero integers a, b, ¢ satisfying (8.12). We
may assume a, b, c are positive and relatively prime. Proposition 8.26 implies
we may assume that a is even and that there exist integers m,n with

a®> =2mn, b>=m?—-n% c=m?>+n%
If n is odd, then m is even, which implies that > = —1 (mod 4). This is
impossible, so n is even and m is odd. Write n = 2q for some integer q. We
then have
(a/2)* = mq.

Since ged(m,n) = 1, we also have ged(m,q) = 1. Since m,q are relatively
prime and their product is a square, it follows easily from looking at the prime
factorizations of m, ¢ that both m and ¢ must be squares:

m = t2, q= u?
for some positive integers t, u. Therefore, we have

b2 =m? —n? =t* — 4t

This may be rewritten as
(2u?)? +v* = t*.

Since m is odd, t is odd. Since ged(m,q) = 1, we also have ged(t,u) = 1.
Therefore, ged(t,2u?) = 1. Proposition 8.26 implies that

2u? = 2w, b=10v>—w? 2=10v°+w?

with ged(v,w) = 1. Since the product vw is a square, it follows that both v
and w are squares:

Therefore, t? = v? + w? becomes

2 :r4+s4.
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This is the same equation we started with. Since
0<t<tt=m?<ec, (8.13)

we have proved that for every triple (a, b, ¢) with a*+b* = ¢2, there is another
solution (r,s,t) with 0 < ¢ < ¢. We therefore have an infinitely descending
sequence ¢ >t > ... of positive integers. This is impossible. Therefore, there
is no solution (a, b, c).

Observe that m? > n?, so ¢ < 2m? = 2t*. Combining this with (8.13) yields

t* < ¢ < 2th

This implies that the logarithmic height of ¢ is approximately one fourth the
logarithmic height of c. Recall that the canonical height of 2P is four times
the height of P. Therefore, we suspect that Fermat’s procedure amounts to
halving a point on an elliptic curve. We’ll show that this is the case.

We showed in Section 2.5.3 that the transformation
2(z+1) 4(z+1)
s Y=

maps the curve
to the curve

If we start with
a* + bt = 02,

then the point
a c

(va) = (37 b_2)
lies on C'. It maps to a point (x,y) on E, with

x_ 5 +1) 941
- (a/b)r a?
2(t4 + 4rtst + (rt — 51)?)
(2rst)?

This implies that

(rs)? rs
4o 2 + 21252 r? + 52
€T = =
(rs)? rs
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Let ¢ be the map in Theorem 8.14. Since x, x —2, x+2 are squares, ¢(x,y) =
1. Theorem 8.14 implies that

(z,y) =2P

for some point P € E(Q).
Let’s find P. We follow the procedure used to prove Theorem 8.14. In the
notation of the proof of Theorem 8.14, the polynomial

t S r2 —t
T=—--T T2
H(T) rs TS 4rs
satisfies ) ) ) )
t T S r“+ s
0) = — 92) = —92) =
fO) =1 fo="" fa ="
The formulas from the proof of Theorem 8.14 say that the point (x1, 1) with
—s/2r —25?
{171 = =
(r2 —t)/drs r2—t
4rs
Yy = P
satisfies 2(x1,y1) = (z,y).
The transformation
2z 213
z=—, w=-—-1+4+—7
Yy Yy

maps F to C. The point (z1,y;) maps to

211 S
Zl = —= — =
Y1 r
213 st
wm=—-1+—==-1-——
2 (2 — 1)
_ r4+s4—r2t_ 2 —r2t
r2(r2 —t) a r2(r? —t)
T2

We have
t 2 —S 4
— ) = — 1.

Therefore, the solution (r, —s,t) corresponds to a point P on E such that 2P
corresponds to (a,b,c). Fermat’s procedure, therefore, can be interpreted as
starting with a point on an elliptic curve and halving it. The height decreases
by a factor of 4. The procedure cannot continue forever, so we must conclude
that there are no nontrivial solutions to start with.
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On y? = 23 —4x, the points of order 2 played a role in the descent procedure
in Section 8.2. We showed that the image of the map ¢ was equal to the image
of E[2] under ¢. If we start with a possible point P € E(Q), then ¢(P) = ¢(T)
for some T € E[2]. Therefore, P — T = 2@ for some @ € F(Q). In Fermat’s
method, the points of order 2 appear more subtly. If (x,y) on E corresponds
to the solution a, b, ¢ of a* + b* = ¢?, then a calculation shows that

(z,y) +(0,0) «— —a,b,—c
(.’II, y) + (27 0) AE— _b7 a,c
(z,y) + (—2,0) «— b,a, —c.

Since we assumed that a was even and b was odd, we removed the solutions
+b, a, Fc from consideration. The solution —a, b, —c was implicitly removed
by the equation ¢ = m? + n?, which required ¢ to be positive. Therefore,
the choices that were made, which seemed fairly natural and innocent, were
exactly those that caused ¢(P) to be trivial and thus allowed us to halve the
point.

Finally, we note that in the descent procedure for F in Section 8.2, we elim-
inated many possibilities by congruences mod powers of 2. The considerations
also appear in Fermat’s method, for example, in the argument that n is even.

In Fermat’s descent, the equation

b2 = tt — du’

appears in an intermediate stage. This means we are working with the point
(w, z) = (u/t,b/t?) on the curve

C': w? = —4z* + 1.
The transformation (see Theorem 2.17)

I CES IR CR S

maps C’ to the elliptic curve
E oy =2 + 162
There is a map ¢ : E — E’ given by

2 2

y* y(a® +4)
(xlay/) = ’Lﬂ(.I,y) = (Fa 22 :
There is also a map ¢’ : £/ — E given by

s e 0)

4%’ 8x'?

(z,y) =v'(2",y) = (
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It can be shown that v’ o4 is multiplication by 2 on E. Fermat’s descent
procedure can be analyzed in terms of the maps v and ¢’

More generally, if E is an elliptic curve given by y? = 234+ Cz?+ Ax and £’
is given by v/ = 2/ — 202’ + (C%? —4A)2’', then there are maps ¢ : E — E’
given by

2

ol = vte) = (G M) 00.0) = vio) =

x
and ¢’ : E' — E given by

/2

(xay) = wl('x/vy/) = < J y/(x/ — 02 s 4A)> ) 1/)/(0,0) = 1/)/(00) = OQ.

477%’ 8x'?

The composition v’ o v is multiplication by 2 on E. It is possible to do
descent and prove the Mordell-Weil theorem using the maps ¢ and ¢’. This
is a more powerful method than the one we have used since it requires only
one two-torsion to be rational, rather than all three. For details, see [114],
[109].

The maps v and ¥’ can be shown to be homomorphisms between E(Q) and

E’'(Q) and are described by rational functions. In general, for elliptic curves

E; and E5 over a field K, a homomorphism from F;(K) to E2(K) that is
given by rational functions is called an isogeny.

8.7 2-Selmer Groups; Shafarevich-Tate Groups

Let’s return to the basic descent procedure of Section 8.2. We start with
an elliptic curve E defined over Q by

v = (z—er)(z —e2)(x — e3)
with all e; € Z. This leads to equations

T — e = au’

T — ey = bv?

T —es = cw?.

These lead to the equations
au? —bv? = ey — e1, au? — cw® = e3 — e;.

This defines a curve Cy 3 in u,v,w. In fact, it is the intersection of two
quadratic surfaces. If it has a rational point, then it can be changed to an
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elliptic curve, as in Section 2.5.4. A lengthy calculation, using the formulas of
Theorem 2.17, shows that this elliptic curve is the original curve E. If Cg .
does not have any rational points, then the triple (a, b, ¢) is eliminated.

The problem is how to decide which curves C, ; . have rational points. In
the examples of Section 8.2, we used considerations of sign and congruences
mod powers of 2 and 5. These can be interpreted as showing that the curves
Cab,c that are being eliminated have no real points, no 2-adic points, or no
5-adic points (for a summary of the relevant properties of p-adic numbers, see
Appendix A). For example, when we used inequalities to eliminate the triple
(a,b,c) = (—1,1,—1) for the curve y*> = x(z —2)(x +2), we were showing that
the curve

C_11,-1: —u? -0 =2, —uP+wr=-2

has no real points. When we eliminated (a,b,c) = (1,2,2), we used congru-
ences mod powers of 2. This meant that

0172’2 . u2 — 2U2 = 2, u2 — 2w2 = -2

has no 2-adic points.

The 2-Selmer group S5 is defined to be the set of (a, b, c) such that Cy p .
has a real point and has p-adic points for all p. For notational convenience,
the real numbers are sometimes called the oo-adics Q. Instead of saying
that something holds for the reals and for all the p-adics Q,, we say that it
holds for Q, for all p < co. Therefore,

Sa = {(a,b,¢)| Cqapc(Qp) is nonempty for all p < oo}.

Therefore, Ss is the set of (a, b, ¢) that cannot be eliminated by sign or congru-
ence considerations. It is a group under multiplication mod squares. Namely,
we regard

S, € (Q*/Q*%) @ (Q/Q%) @ (Q*/Q*).

The prime divisors of a, b, ¢ divide (e; — e3)(e1 — e3)(e2 — e3), which implies
that S5 is a finite group.
The descent map ¢ gives a map

6 B(Q)/2E(Q) — 5.
The 2-torsion in the Shafarevich-Tate group is the cokernel of this map:
H_I2 = SQ/Im qb

The symbol III is the Cyrillic letter “sha,” which is the first letter of “Shafare-
vich” (in Cyrillic). We’ll define the full group I in Section 8.9. The group
I, represents those triples (a, b, c) such that C, ;. has a p-adic point for all
p < 00, but has no rational point. If Il # 1, then it is much more difficult
to find the points on the elliptic curve E. If (a, b, c) represents a nontrivial
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element of III, then it is usually difficult to show that C, ;. does not have
rational points.

Suppose we have an elliptic curve on which we want to find rational points.
If we do a 2-descent, then we encounter curves Cg ;.. If we search for points
on a curve Cg,p . and also try congruence conditions, both with no success,
then perhaps (a,b,c) represents a nontrivial element of III;. Or we might
need to search longer for points. It is difficult to decide which is the case.
Fortunately for Fermat, the curves on which he did 2-descents had trivial

5.

The possible nontriviality of the group Il means that we do not have a
general procedure for finding the rank of the group F(Q). The group S; can
be computed exactly and allows us to obtain an upper bound for the rank.
But we do not know how much of S5 is the image of ¢ and how much consists
of triples (a,b,c) representing elements of a possibly nontrivial III5. Since
the generators of E(Q) can sometimes have very large height, it is sometimes
quite difficult to find points representing elements of the image of ¢. Without
this information, we don’t know that the triple is actually in the image.

The Shafarevich-Tate group is often called the Tate-Shafarevich group
in English and the Shafarevich-Tate group in Russian. Since III comes after
T in the Cyrillic alphabet, these names for the group, in each language, are
the reverse of the standard practice in mathematics, which is to put names
in alphabetical order. The symbol III was given to the group by Cassels (see
(23, p. 109]).

REMARK 8.27 The Hasse-Minkowski theorem (see [104]) states that a
quadratic form

n o on
Q(xla s 7:Cn) = Z Z Q35T 5

i=1 j=1

with a;; € Q represents 0 nontrivially over Q (that is, Q(z1,...,z,) = 0 for
some (0,...,0) # (z1,...,z,) € Q") if and only if it represents 0 nontrivially
in Q, for all p < oco. This is an example of a local-global principle.

For a general algebraic variety over Q (for example, an algebraic curve), we
can ask whether the local-global principle holds. Namely, if the variety has a
p-adic point for all p < oo, does it have a rational point? Since it is fairly easy
to determine when a variety has p-adic points, and most varieties fail to have
p-adic points for at most a finite set of p, this would make it easy to decide
when a variety has rational points. However, the local-global principle fails in
many cases. In Section 8.8, we’ll give an example of a curve, one that arises in
a descent on an elliptic curve, for which the local-global principle fails.
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8.8 A Nontrivial Shafarevich-Tate Group
Let E be the elliptic curve over Q given by

y? = x(z — 2p)(z + 2p),

where p is a prime. If we do a 2-descent on E, we encounter the equations

2

rT=u
z — 2p = pv?
x4 2p = pw?.

These yield the curve defined by the intersection of two quadratic surfaces:

Crpp: u? —pv® =2p, ¥ —pw® =—2p. (8.14)

THEOREM 8.28
Ifp =9 (mod 16), then C4 5, has ¢-adic points for allprimes ¢ < oo, but
has no rational points.

PROOF First, we’ll show that there are no rational points. Suppose there
is a rational point (u,v,w). We may assume that u,v,w > 0. If p divides
the denominator of v, then an odd power of p is in the denominator of pv?
and an even power of p is in the denominator of u?, so u? — pv? cannot be
an integer, contradiction. Therefore, u, v, and hence also w have no p in their
denominators. It follows easily that the denominators of u,v,w are equal.
Since u? = 2p + pv?, we have u = 0 (mod p). Write

__pr S t

u y V= -, w = —,
(& (& (&

with positive integers 7, s, t, e and with

ged(r,e) = ged(s, e) = ged(t,e) = 1.
The equations for C , , become

pr?—s* =22 pr?—t* = —2¢%

Subtracting yields
s* +de* =12,

If s is even, then pr? = s? + 2e? is even, so r is even. Then 2e? = pr? —
5?2 = 0 (mod 4), which implies that e is even. This contradicts the fact that
ged(s, e) = 1. Therefore, s is odd, so

ged(s,2e) = 1.
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By Proposition 8.26, there exist integers m,n with ged(m,n) = 1 such that

2¢ =2mn, s=m?—n? t=m?>+n%

Therefore,
pr? =57+ 2¢* = (m* — n?)? 4+ 2(mn)? = m* + n’.

Let g be a prime dividing r. Proposition 8.26 says that m # n (mod 2), which
implies that pr? must be odd. Therefore, ¢ # 2. Since ged(m,n) = 1, at least
one of m, n is not divisible by ¢. It follows that both m,n are not divisible by
q, since m* +n%* =0 (mod ¢q). Therefore,

(m/n)*= -1 (mod q).

It follows that m/n has order 8 in ¥, so ¢ = 1 (mod 8). Since r is a positive
integer and all prime factors of r are 1 mod 8, we obtain

r=1 (mod 8).
Therefore, 7> =1 (mod 16), so
m* +n* =pr =9 (mod 16).
But, for an arbitrary integer j, we have j4 = 0,1 (mod 16). Therefore,
m* +n*=0,1,2 (mod 16),

so pr? # m*+n*. This contradiction proves that C; p,p has no rational points.

We now need to show that C ,, has g-adic points for all primes ¢ < oo.
The proof breaks into four cases: ¢ = 0o, ¢ = 2, ¢ = p, and all other g.

The case of the reals is easy. Let u be large enough that u? > 2p. Then
choose v, w satisfying (8.14).

For q = 2, write

u=1/2, v=wv1/2, w=w/2.

The equations for C' , , become

1 —pv% =8p, 1 —pw% = —8p.

We need to solve
vi=(1-8p)/p, wi=(1+8p)/p

in the 2-adics. Since
(1+8p)/p=1 (mod 8),

and since any number congruent to 1 mod 8 has a 2-adic square root (see
Appendix A), vy, w; exist. Therefore, C p, , has a 2-adic point.
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Now let’s consider ¢ = p. Since p = 1 (mod 4), there is a square root of —1
mod p. Since p =1 (mod 8), there is a square root of —2 mod p. Therefore,
both 2 and —2 have square roots mod p. Hensel’s lemma (see Appendix A)
implies that both 2 and —2 have square roots in the p-adics. Let

u=0, v=+v-2, w= 2.

Then u,v,w is a p-adic point on C p .

Finally, we need to consider q # 2, p, co. From a more advanced standpoint,
we could say that the curve C) ,, is a curve of genus 1 and that Hasse’s
theorem holds for such curves. If we use the estimates from Hasse’s theorem,
then we immediately find that C} , , has points mod ¢ for all ¢ (except maybe
for a few small ¢, since we are not looking at the points at infinity on Cy ).
However, we have only proved Hasse’s theorem for elliptic curves, rather than
for arbitrary genus 1 curves. In the following, we’ll use Hasse’s theorem only
for elliptic curves and show that C ,, has points mod ¢g. Hensel’s lemma
then will imply that there is a g-adic point.

Subtracting the two equations defining C' , , allows us to put the equations
into a more convenient form:

w?—v? =4, u?—pv®=2p. (8.15)

Suppose we have a solution (ug, v, wg) mod ¢. It is impossible for both wug
and wg to be 0 mod q.

Suppose uy = 0 (mod ¢). Then wy # 0 (mod ¢q). Also, vg #Z 0 (mod q).
Let u = 0. Since —pvZ = 2p (mod q), Hensel’s lemma says that there exists
v = vy (mod q) in the g-adics such that —pv? = 2p. Applying Hensel’s lemma,
again gives the existence of w = wy satisfying w? —v? = 4. Therefore, we have
found a g-adic point. Similarly, if wyg = 0 (mod gq), there is a g-adic point.
Finally, suppose uy # 0 (mod ¢) and wy # 0 (mod ¢). Choose any v = vy
(mod ¢q). Now use Hensel’s lemma to find u,w. This yields a g-adic point.

It remains to show that there is a point mod ¢. Let n be a quadratic
nonresidue mod g. Then every element of F is either of the form u? or nu?.

Consider the curve
C':w?—v? =4, nu®—pv® =2p.

Let N be the number of points mod g on C , and let N be the number of
points mod ¢ on C’. (We are not counting points at infinity.)

LEMMA 8.29
N+ N =2(q—-1).

PROOF Let x #0 (mod ¢q). Solving

w+v=z, w—v=4/z (mod q)
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yields a pair (v, w) for each x. There are ¢ — 1 choices for x, hence there are
q — 1 pairs (v, w) satisfying w? — v? = 4. Let (v, w) be such a pair. Consider
the congruences

u? =2p+pv® (mod ¢) and nu® =2p+pv? (mod q).

If 2p + pv? £ 0 (mod q), then exactly one of these has a solution, and it has
2 solutions. If 2p + pv? = 0 (mod q), then both congruences have 1 solution.
Therefore, each of the ¢ — 1 pairs (v, w) contributes 2 to the sum N + N’; so

N+N =2q-1). 1

The strategy now is the following. If N > 0, we’re done. If N’ > 0,
then C’ can be transformed into an elliptic curve with approximately N’
points. Hasse’s theorem then gives a bound on N’, which will show that
N =2(qg—1)— N’ >0, so there must be points on C  ,.

LEMMA 8.30
Ifq> 11, then N > 0.

PROOF If N =0then N’ =2(¢—1) > 0, by Lemma 8.29. In Section 2.5.4,
we showed how to start with the intersection of two quadratic surfaces and
a point and obtain an elliptic curve. Therefore, we can transform C’ to
an elliptic curve E’'. By Hasse’s theorem, £’ has less than ¢ + 1 + 2,/q
points. We need to check that every point on C’ gives a point on E’. In the
parameterization

At 2 + 22
_ w =
1 —¢2’ 1—1¢2

(8.16)

v =

of w? —v? = 4, the value t = oo corresponds to (v,w) = (0,—2). All of
the other points (v, w) correspond to finite values of ¢. No (finite) pair (v, w)
corresponds to t = %1 (the lines through (0, 2) of slope t = +1 are parallel to
the asymptotes of the hyperbola). Substituting the parameterization (8.16)
into nu? — pv? = 2p yields the curve

Q: ul= %(# + 6t* + 1),
where u; = (1 — t?)u. A point on C’ with (v,w) # (0,—2) yields a finite
point on the quartic curve @’. Since C’ has 2(¢ — 1) > 1 points mod ¢, there
is at least one finite point on @’. Section 2.5.3 describes how to change @’
to an elliptic curve E’ (the case where @’ is singular does not occur since @’
is easily shown to be nonsingular mod ¢ when g # 2,p). Every point mod ¢
on @’ (including those at infinity, if they are defined over F,) yields a point
(possibly oo) on E’ (points at infinity on @’ yield points of order 2 on E’).

© 2008 by Taylor & Francis Group, LLC



SECTION 8.8 A NONTRIVIAL SHAFAREVICH-TATE GROUP 243

Therefore, the number of points on C” is less than or equal to the number of
points on E’. By Hasse’s theorem,

20— 1)=N'<qg+1+2/.

This may be rearranged to obtain

(Va—1)" <4,
which yields ¢ < 9. Therefore, if ¢ > 11, we must have N # 0. |

It remains to treat the cases ¢ = 3,5,7. First, suppose p is a square mod
g. There are no points on C} ,, with coordinates in F3, for example, so we
introduce denominators. Let’s try

u=ui/q, v=1/q, w=w1/q.

Then we want to solve
wi=1+4¢% ui=p+2pd>.

Since p is assumed to be a square mod ¢, Hensel’s lemma implies that there
are g-adic solutions uq,wy.

Now suppose that p is not a square mod q. Divide the second equation in
(8.15) by p to obtain

Let n be any fixed quadratic nonresidue mod ¢, and write 1/p = na? (mod q).
Letting u; = xu, we obtain

w? —v? =4, nu?-v*=2.
For ¢ = 3 and ¢ = 5, we may take n = 2 and obtain

w? — v =4, 2u?—v*=2 (mod q).

This has the solution (u,v,w) = (1,0,2). As above, Hensel’s lemma yields a
g-adic solution.
For ¢ = 7, take n = 3 to obtain

w? —v> =4, 3ui —v*=2 (mod7).

This has the solution (uq,v,w) = (3,2,1), which yields a 7-adic solution.
Therefore, we have shown that there is a g-adic solution for all ¢ < oo. This
completes the proof of Theorem 8.28.

© 2008 by Taylor & Francis Group, LLC



244 CHAPTER 8 ELLIPTIC CURVES OVER Q

8.9 Galois Cohomology

In this section, we give the definition of the full Shafarevich-Tate group.
This requires reinterpreting and generalizing the descent calculations in terms
of Galois cohomology. Fortunately, we only need the first two cohomology
groups, and they can be defined in concrete terms.

Let G be a group and let M be an additive abelian group on which G acts.
This means that each g € G gives a automorphism g : M — M. Moreover,

(9192)(m) = g1(g2(m))

for all m € M and all g1,90 € G. We call such an M a G-module. One
possibility is that g is the identity map for all ¢ € G. In this case, we say that
the action of G is trivial.

If G is a topological group, and M has a topology, then we require that the
action of G on M be continuous. We also require all maps to be continuous.
In the cases below where the groups have topologies, this will always be the
case, so we will not discuss this point further.

A homomorphism ¢ : M; — M, of G-modules is a homomorphism of
abelian groups that is compatible with the action of G:

P(gm1) = g p(m1)

for all g € G and all my € M;. Note that ¢(m1) is an element of Ms, so
g ¢(my) is the action of g on an element of M. An exact sequence

0— My — My — M3z — 0

is a short way of writing that the map from M; to M is injective, the map from
M, to Mj is surjective, and the image of M7 — M is the kernel of My — M3.
The most common situation is when M; C Ms and M3 = My /M.

More generally, a sequence of abelian groups and homomorphisms

is said to be exact at B if the image of A — B is the kernel of B — C'. Such
a sequence is said to be exact if it is exact at each group in the sequence.
Define the zeroth cohomology group to be

H°(G,M) =M% ={mec M|gm=m forall g€ G}.

For example, if G acts trivially, then H°(G, M) = M.
Define the cocycles

Z(G, M) =
{ maps f: G — M| f(g192) = f(g1) + g1 f(g2) for all g1, g2 € G}.
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The maps f are (continuous) maps of sets that are required to satisfy the
given condition. Note that g1 f(g2) means that we evaluate f(g2) and obtain
an element of M, then act on this element of M by the automorphism g;.
The set Z is sometimes called the set of twisted homomorphisms from G
to M. It is a group under addition of maps.

We note one important case. If G acts trivially on M, then

Z(G, M) = Hom(G, M)

is the set of group homomorphisms from G to M.
There is an easy way to construct elements of Z(G, M). Let m be a fixed
element of M and define

fm(g) = gm —m.
Then f,, gives a map from G to M. Since

fm(9192) = g1(gam) —m
= g1m —m + g1(gam — m)

= fm(91) + 91 fm(92),
we have f,, € Z(G, M). Let
B(G,M) = {fm|m e M}.

Then B(G,M) C Z(G,M) is called the set of coboundaries. Define the
first cohomology group

HY(G,M)=Z/B.

In the important special case where G acts trivially, B(G, M) = 0 since
gm — m = 0 for all g,m. Therefore

H'(G, M) = Hom(G, M)

is simply the set of group homomorphisms from G to M.
A homomorphism ¢ : M7 — M of G-modules induces a map

¢« : H (G, My) — H’ (G, My)
of cohomology groups for j = 0,1. For H?, this is simply the restriction of ¢

to M. Note that if gm; = mq, then gp(m1) = ¢(gm1) = ¢(my), so ¢ maps
ME into M§'. For H', we obtain ¢, by taking an element f € Z and defining

(@+(F))(9) = o(f(9))-

It is easy to see that this induces a map on cohomology groups.
The main property we need is the following.
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PROPOSITION 8.31
An exact sequence
0— My — My — M3z — 0

of G-m odules Induces a Iong exact sequence

0 — H%G,M;) — H°(G, My) — H°(G, M3)
— HY(G,M,) — H G, M) — H' (G, M3)

of acohom ology groups.

For a proof, see any book on group cohomology, for example [132], [21],
or [6]. The hardest part of the proposition is the existence of the map from
HO(G, Mg) to Hl(G, Ml)

Suppose now that we have an elliptic curve defined over Q. Let n be
a positive integer. Multiplication by n gives an endomorphism of E. By
Theorem 2.22, it is surjective from E(Q) — E(Q), since Q is algebraically
closed. Therefore, we have an exact sequence

0 — E[n] — E(Q) % E(Q) — 0. (8.17)

Let o
G = Gal(Q/Q)

be the Galois group of Q/Q. The reader who doesn’t know what this group
looks like should not worry. No one does. Much of modern number theory
can be interpreted as trying to understand the structure of this group. The
one property we need at the moment is that

H°(G,E(Q) = E(Q)° = E(Q).

Applying Proposition 8.31 to the exact sequence (8.17) yields the long exact
sequence

0— E(Q)n] — E(Q) = E(Q)
— H'(G,En]) » H'(G,E(Q)) = H'(G, E(Q))-

This induces the short exact sequence
0— B(Q)/nE(Q) — H' (G, E[n]) — H(G,E(Q))[n] =0, (8.18)

where we have written A[n] for the n-torsion in an abelian group A. This
sequence is similar to the sequence

0— E(Q)/2E(Q) — 52 — Iy — 0

that we met in Section 8.7. In the remainder of this section, we’ll show how the
two sequences relate when n = 2 and also consider the situation for arbitrary
n.
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First, we give a way to construct elements of H!'(G,E(Q)). Let C be a
curve defined over Q such that C is isomorphic to E over Q. This means that
there is a map ¢ : E — C given by rational functions with coefficients in Q
and an inverse function ¢! : C — E also given by rational functions with
coefficients in Q. Let g € G, and let ¢9 denote the map obtained by applying
g to the coefficients of the rational functions defining ¢. Since C' is defined

over QQ, the map ¢9 maps E to gC = C. Note that

9(6(P)) = (¢7)(gP) (8.19)

for all P € E(Q), since the expression g(¢(P)) means we apply g to ev-
erything, while ¢9 means applying g to the coefficients of ¢ and gP means
applying g to P.

We have to be a little careful when applying g1g2. The rule is

¢9192 — (¢92)91 ,

since applying g1g2 to the coefficients of ¢ means first applying g-, then ap-
plying g; to the result.

We say that a map ¢ is defined over Q if ¢9(P) = ¢(P) for all P € E(Q)
and all g € G (this is equivalent to saying that the coefficients of the rational
functions defining ¢ can be taken to be in Q, though proving this requires
results such as Hilbert’s Theorem 90).

The map ¢~ '¢9 gives a map from E to E. We assume the following:

A ssum ption : Assume that there is a point 7, € E(Q) such that

¢~ (¢(P)) =P +1T, (8.20)

for all P € E(Q). Equation (8.20) can be rewritten as

¢?(P) = ¢(P +Ty) (8.21)

for all P € E(Q). If we let P = (¢9)71(Q) for a point Q € C(Q), then the
assumption becomes

¢~1(Q) = (¢°)71(Q) + T, (8.22)

which says that ¢! and (¢9)~! differ by a translation. We’ll give an example
of such a map ¢ below.

LEMMA 8.32
Define 7, : G — E(Q) by 74(g) =Ty . Then 74 € Z(G, E(Q)) .
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PROOF

91_1¢(P + Tg1gz) = 91_1(Z5glg2 (P)
= ¢%(g; ' P) (by (8.19))
= ¢(97 ' P+Ty,) (by (8:21))
= g7 6" (P + q1Ty,) (by (8.19))
= gf1¢(P + 91Ty, +1y,) (by (8.21)).

Applying g; then ¢! yields
Tyig, = 911y, + T, .

This is the desired relation. I

Suppose we have curves C; and maps ¢; : E — C;, for i = 1,2, as above.
We say that the pairs (C1, ¢1) and (Cs, ¢2) are equivalent if there is a map

0 : C17 — C5 defined over Q and a point Py € E(Q) such that
03 '061(P) = P + Py (8.23)

for all P € E(Q). In other words, if we identify C; and Cy with E via ¢; and
¢2, then 0 is simply translation by Fp.

PROPOSITION 8.33
The pairs (C1, ¢1) and (Cs, ¢2) are equivalknt if and only if the cocycles 74,
and 74, di er by a coboundary. This m eans that there is a point P; € E(Q)
such that
To:1(9) = To(9) = gP1 — Py
frallg e G.

PROOF  For i = 1,2, denote 74,(g) = T, so
¢f(P) = ¢i(P +Ty) (8.24)

for all P € E(Q). Suppose the pairs (C1, ¢1) and (Cz, ¢2) are equivalent, so
there exists 6 : C7 — Cy and Py as above. For any P € F(Q), we have

P+ T} +Py=¢;0¢1(P+T)) (by (8.23))
= ¢5 ' 0¢7(P) (by (8.24))
= ¢y 09 (d51001)?(P) (since §9 = 0)
= (¢5 '091)(P)+T; (by (8.20))
= g(¢3'061) (g7 P) + T2 (by (8.19))
=g(g7'P+P) + T2 (by (8.23))
=P+ gP+T,.
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Therefore,
Tgl —ng - T¢1(g) —T¢2(g) =gb — .
Conversely, suppose there exists P; such that
To:(9) = Too(9) = gP1 — P1. (8.25)
Define 6 : C; — C3 by

0(Q) = d2(¢7 1 (Q) + Pr).

Clearly, 6 satisfies (8.23). We need to show that 6 is defined over Q. If
Q € C(Q), then
09(Q) = g0(g~'Q) (by (8.19))

= g2 (¢1'(97'Q) + 1)

= ¢3((67)"1(Q) + gP1)

= 0265 99)((¢1) 1 (Q) + gP1)

= ¢2 ((67) "1 (@) + gPL +T2)  (by (8.24))

=62 (6:1(Q) —Ty(9) + 9P+ T7)  (by (8.22))

— $2(671(Q) + P1)  (by (8.25))

= 0(Q).

Therefore, 0 is defined over Q, so the pairs (Cy, ¢1) and (Ca, ¢2) are equivalent.

Proposition 8.33 says that we have a map
equivalence classes of pairs (C, ¢) — H*(G, E(Q)).

It can be shown that this is a bijection (see [109]). The most important
property for us is the following.

PROPOSITION 8.34 B
Let T, corregoond to the pair (C, ¢). Then 7, € B(G, E(Q)) (= coboundaries)
if and only if C' has a rational point (that is, a point with coordinates in Q).

PROOF Let P € E(Q). Then

gP +Ty = ¢ ¢%(gP) = ¢ ' (gp(P))

and

Therefore,
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If C has a rational point ), choose P such that ¢(P) = Q. Then gQ = Q@ for
all g implies that

Ty =g(=P)—(=P)
for all g € G. Conversely, if T, = g(—P) — (—P) for all g then g¢(P) = ¢(P)
for all g € G, so ¢(P) is a rational point. |

Propositions 8.33 and 8.34 give us a reinterpretation in terms of cohomol-
ogy groups of the fundamental question of when certain curves have rational
points.

Example 8.12
Consider the curve (' 5, , from Section 8.8. It was given by the equations

2

r=1u
T — 2p = pv?
z + 2p = pw?.

These were rewritten as
w2 —v? =4, u2—pv?=2p.
The method of Section 2.5.4 changes this to
C: 5% =2p(t* + 612 + 1).

Finally, the transformation

2 2 2t2(z — 2+ dpx — 4p?
L Yzt p)7 s— —\/2p+ (z p):\/Q—a:era: p
y V2p z(z — 2p)

(use the formulas of Section 2.5.3, plus a minor change of variables) changes
the equation to
E: y? =z(x —2p)(z + 2p).

We want to relate the curve (1, from Section 8.8 to a cohomology class in
HY(G, E(Q)). The map

p: E —-C
(z,y) — (t,5)

gives a map from E to C. Since the equations for £ and C' have coefficients
in Q, these curves are defined over Q. However, ¢ is not defined over Q.
A short computation shows that

(z,y) + (=2p,0) = (21,91)
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on F, where

Another calculation shows that

¢(z1,91) = (=1, =5).

Let g € G be such that g(v/2p) = —+v/2p. Then ¢9 is the transformation
obtained by changing 1/2p to —/2p in the formulas for ¢. Therefore,

¢ (z,y) = (—t,—s) = ¢(z1,41).

We obtain
o' ¢9(x,y) = (2,y) + (—2p,0).

Now suppose g € G satisfies g (\/Qp) = ++/2p. Then ¢9 = ¢, so

o~ (z,y) = (z,y).

Putting everything together, we see that the pair (C, ¢) is of the type con-
sidered above. We obtain an element of H'(G, E[2]) that can be regarded as
an element of H'(G, E(Q)). The cocycle 7, is given by

. 4 Joo ifg(v2p) =+V2p
s(9) =Ty = {(—219,0) if g (v2p) = —v/2p

The cohomology class of 7,4 is nontrivial in H!(G, E(Q)), and hence also in
H'(G, E[2]), because C has no rational points. Note that 7, is a homomor-
phism from G to E[2]. This corresponds to the fact that G acts trivially on
E[2] in the present case, so H'(G, E[2]) = Hom(G, E|[2]). The kernel of 7 is
the subgroup of G of index 2 that fixes Q(1/2p).

In general, if F is given by y? = (x —e1)(z — e2)(z — e3) with e, ez, e3 € Q,
then a 2-descent yields curves C, ¢, as in Section 8.2. These curves yield
elements of H'(G, E[2]). The curves that have rational points give cocycles
in Z(G, E(Q)) that are coboundaries. We also saw in the descent procedure
that a rational point on a curve Cj ; . comes from a rational point on E. This

discussion is summarized by the exact sequence
0 — E(Q)/2E(Q) — H'(G, E[2]) — H'(G, E(Q))[2] — 0.

All of the preceding applies when Q is replaced by a p-adic field Q, with
p < 0o. We have an exact sequence

0— E(Qy)/2E(Qp) — H'(Gy, E[2]) — H'(Gy, E(Qy))[2] — 0,

where

G, = Gal(Q,,/Qy).
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The group G), can be regarded as a subgroup of G. Recall that cocycles in
Z(G, E[2]) are maps from G to E[2] with certain properties. Such maps may
be restricted to G, to obtain elements of Z(G,, E[2]). A curve Cy . yields an
element of H'(G, E[2]). This yields an element of H!(G,, F[2]) that becomes
trivial in H'(Gp, E(Q,,)) if and only if Cq . has a p-adic point.

In Section 8.7, we defined Sy to be those triples (a,b,c) such that Cyp .
has a p-adic point for all p < oo. This means that Sy is the set of triples
(a, b, c) such that the corresponding cohomology class in H!(G, E[2]) becomes
trivial in H'(Gp, E(Q,)) for all p < co. Moreover, Iy is S modulo those
triples coming from points in E(Q). All of this can be expressed in terms
of cohomology. We can also replace 2 by an arbitrary n > 1. Define the
Shafarevich-Tate group to be

I = Ker | H'(G,E@Q)) — [[ H'(G,, E(Qy))

p<oo

and define the n-Selmer group to be

Sp = Ker Hl(szE[n]) - H Hl(G:DvE(Q_p))

p<oo

The Shafarevich-Tate group can be thought of as consisting of equivalence
classes of pairs (C,¢) such that C' has a p-adic point for all p < oo. This
group is nontrivial if there exists such a C that has no rational points. In
Section 8.8, we gave an example of such a curve. The n-Selmer group S5,, can
be regarded as the generalization to n-descents of the curves C, ; . that arise
in 2-descents. It is straightforward to use the definitions to deduce the basic
descent sequence

0 — E(Q)/nE(Q) — S — H[n] — 0,

where III[n] is the n-torsion in III. When one is doing descent, the goal is to
obtain information about E(Q)/nE(Q). However, the calculations take place
in S,,. The group IlI[n] is the obstruction to transferring information back to
E(Q)/nE(Q).

The group S,, depends on n. It is finite (we proved this in the case where n =
2 and F[2] C E(Q)). The group III is independent of n. Its n-torsion II[n] is
finite since it is the quotient of the finite group .5,,. It was conjectured by Tate
and Shafarevich in the early 1960s that III is finite; this is still unproved in
general. The first examples where III was proved finite were given by Rubin
in 1986 (for all CM curves over Q with analytic rank 0; see Section 14.2) and
by Kolyvagin in 1987 (for all elliptic curves over Q with analytic rank 0 or 1).
No other examples over Q are known.
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Exercises
8.1 Show that each of the following elliptic curves has the stated torsion
group.

(a) y2=a%-2;0

(b) y* = 2® +8; Zy

(c) y* =% +4; Z3

(d) y* = 2® 4 4a; Zy

(e) y? = x3 — 4322 + 8208; Zs5

(f) v* =2 +1; Zg

(g) y? = 23 — 1323z + 6395814; Z

(h) y? = 23 — 440912 + 3304854; Zg

(i) y? = 23 — 2192 + 1654; Zg

(j) y? = a3 — 58347z + 3954150; Z1o

(k) y? = 2% — 33339627z + 73697852646; Z1o
1) y* =2 —u; Zy & Zy
(m) 3% = 23 — 12987z — 263466; Z4 © Zo

(n) y? = 23 — 24003z + 1296702; Zg & Z»

(0) y? = o3 — 1386747z + 368636886; Zg P Zo

Parameterizations of elliptic curves with given torsion groups can be
found in [67].

8.2 Let E be an elliptic curve over Q given by an equation of the form
y? = 23 4+ Ca? + Az + B, with A, B,C € Z.

(a) Modify the proof of Theorem 8.1 to obtain a homomorphism
At B /B3 — Zpor

(see 68, pp. 51-52]).
(b) Show that (z,y) € E(Q) is a torsion point, then z,y € Z.

3

8.3 (a) Show that the map )\, applied to the curve y? = 23, is the map of

Theorem 2.30 divided by p” and reduced mod p*".
(b) Consider the map A, of Exercise 8.2, applied to the curve E : y? =
23 4+ ax?. Let 1 be as in Theorem 2.31. The map .9~ ! gives a

map
y+ax

Yy —ax
Use the Taylor series for log((1+41t)/(1 —t)) to show that the map
(2a)\p~1 is p~" times the logarithm map, reduced mod p?".

—p "% (mod p).
Yy

© 2008 by Taylor & Francis Group, LLC



254 CHAPTER 8 ELLIPTIC CURVES OVER Q

8.4 Let E be given by y? = 23 + Az + B with A, B € Z. Let P = (z,y) be
a point on E.

(a) Let 2P = (x2,y2). Show that
y? (4z2(32° + 44) — 32 + 5Az + 27B) = 4A4° + 27B.

(b) Show that if both P and 2P have coordinates in Z, then y? divides
4A3 + 27B2%. This gives another way to finish the proof of the
Lutz-Nagell theorem.

8.5 Let E be the elliptic curve over Q given by y? + zy = 23 + 2? — 11z.

Show that the point
11 11
P=(— —-—=
(v-5)

is a point of order 2. This shows that the integrality part of Theorem 8.7
(see also Exercise 8.2), which is stated for Weierstrass equations, does
not hold for generalized Weierstrass equations. However, since changing
from generalized Weierstrass form to the form in Exercise 8.2 affects
only powers of 2 in the denominators, only the prime 2 can occur in the
denominators of torsion points in generalized Weierstrass form.

8.6 Show that the Mordell-Weil group E(Q) of the elliptic curve y? = 23 —x
is isomorphic to Zo & Zs.

8.7 Suppose E(Q) is generated by one point () of infinite order. Suppose
we take R; = 3@Q), which generates £(Q)/2E(Q). Show that the process
with Py = @ and

P, = Rj, +2P;41,

as in Section 8.3, never terminates. This shows that a set of represen-
tatives of E(Q)/2E(Q) does not necessarily generate F(Q).

8.8 Show that there is a set of representatives of F(Q)/2E(Q) that gener-
ates F(Q). (Hint: This mostly follows from the Mordell-Weil theorem.
However, it does not handle the odd order torsion. Use Corollary 3.13
to show that the odd order torsion in F(Q) is cyclic. In the set of rep-
resentatives, use a generator of this cyclic group for the representative
of the trivial coset.)

8.9 Let E be an elliptic curve defined over Q and let n be a positive integer.

Assume that E[n] C E(Q). Let P € E(Q) and let Q € E(Q) be such
that nQ = P. Define amap dp : Gal(Q/Q) — E[n] by 6p(c) = cQ—Q.

(a) Let o € Gal(Q/Q). Show that cQ — Q € E|n].
(b) Show that dp is a cocycle in Z(G, En]).
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(c) Suppose we choose Q' with n@Q" = P, and thus obtain a cocycle
0. Show that dp — d% is a coboundary.

(d) Suppose that dp(o) is a coboundary. Show that there exists @ €
E(Q) such that n@Q = P.

This shows that we have an injection F(Q)/nE(Q) — H(G,E[n)).
This is the map of Equation 8.18.
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Chapter 9

Elliptic Curves over C

The goal of this chapter is to show that an elliptic curve over the complex
numbers is the same thing as a torus. First, we show that a torus is isomor-
phic to an elliptic curve. To do this, we need to study functions on a torus,
which amounts to studying doubly periodic functions on C, especially the
Weierstrass p-function. We then introduce the j-function and use its proper-
ties to show that every elliptic curve over C comes from a torus. Since most
of the fields of characteristic 0 that we meet can be embedded in C, many
properties of elliptic curves over fields of characteristic 0 can be deduced from
properties of a torus. For example, the n-torsion on a torus is easily seen to
be isomorphic to Z, & Z,, so we can deduce that this holds for all elliptic
curves over algebraically closed fields of characteristic 0 (see Corollary 9.22).

9.1 Doubly Periodic Functions
Let wy, w2 be complex numbers that are linearly independent over R. Then
L =7Zw, + Zwy = {nlwl —+ Nowo |n1,n2 S Z}

is called a lattice. The main reason we are interested in lattices is that C/L
is a torus, and we want to show that a torus gives us an elliptic curve.
The set

F:{G1W1+CLQCU2|0§CLZ'<1,i:1,2}

(see Figure 9.1) is called a fundamental parallelogram for L. A differ-
ent choice of basis wy,ws for L will of course give a different fundamental
parallelogram. Since it will occur several times, we denote

w3 = W1 + wa.

A function on C/L can be regarded as a function f on C such that f(z +
w) = f(z) for all z € C and all w € L. We are only interested in meromorphic

257
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Figure 9.1
The Fundamental Parallelogram

functions, so we define a doubly periodic function to be a meromorphic

function
f:C—-CUo0

such that
fz+w) = [f(2)
for all z € C and all w € L. Equivalently,

fz+w) = f(2), i=1,2.

The numbers w € L are called the periods of f.
If f is a (not identically 0) meromorphic function and w € C, then we can
write
f2) = ar(z = w)" + app1(z —w)™* 4o

with a, # 0. The integer r can be either positive, negative, or zero. Define
the order and the residue of f at w to be

r = ordy f

a_; = Res,, f.
Therefore, ord,, f is the order of vanishing of f at w, or negative the order of
a pole. The order is 0 if and only if the function is finite and nonvanishing at
w. It is not hard to see that if f is doubly periodic, then ord, . f = ord, f

and Resy 1o f = Res, f for all w € L.
A divisor D is a formal sum of points:

D = ny[wi] + nawa] 4 - - - 4 ng[wy],

where n; € Z and w; € F. In other words, we have a symbol [w] for each
w € F, and the divisors are linear combinations with integer coefficients of
these symbols. The degree of a divisor is

deg(D) = Z ;.
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Define the divisor of a function f to be

div(f) = ) (ordy f)[w].

weF

THEOREM 9.1
Let f e a doubly pericdic function for the Jathce L and ket F ke a fundam ental
paralkelogram for L.

1. If f hasno polks, then [ is constant.

2. ) per Resyf=0.
3. If f is not identically 0,

deg(div(f)) = Y ord,f = 0.

weF
4. If f isnot identically 0,

Zw-ordwfeL.

weF

5. If f isnot constant, then f : C — C U oo is surjctve. If n is the sum
of the orders of the poks of f In F' and zy € C, then f(z) = 2z hasn
solutions (counting m ultplicities) .

6. If f has only one poke in F', then this pole cannot ke a sin pke pok.
ATl of the alove sum s over w € F' have only finitely m any nonzero temm s.

PROOF Because f is a meromorphic function, it can have only finitely
many zeros and poles in any compact set, for example, the closure of F.
Therefore, the above sums have only finitely many nonzero terms.

If f has no poles, then it is bounded in the closure of F', which is a compact
set. Therefore, f is bounded in all of C. Liouville’s theorem says that a
bounded entire function is constant. This proves (1).

Recall Cauchy’s theorem, which says that

(z)dz = 2mi Z Resw f,

f
oF weF

where OF is the boundary of F' and the line integral is taken in the coun-
terclockwise direction. Write (assuming wq,ws are oriented as in Figure 9.1;
otherwise, switch them in the following)

f(z)dz =

oF

sz (2)dz + /:QJFWI f(z)dz + /w1 f(2)dz + /: f(2)dz.

2 w1twsz
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Since f(z +w1) = f(z), we have

/w T f)de = /w Ttz = 7 fde.

1twsa
/w jlm f(2)dz = — /w 0 f(2)dz.

Therefore, the sum of the four integrals is 0. There is a small technicality
that we have passed over. The function f is not allowed to have any poles on
the path of integration. If it does, adjust the path with a small detour around
such points as in Figure 9.2. The integrals cancel, just as in the above. This
proves (2).

Similarly,

Figure 9.2

Suppose r = ord,, f. Then f(z) = (2 — w)"g(z), where g(w) is finite and
nonzero. Then . )
'z r 4G

flz)  z—w  g(2)

Res,, (?) =r.

If f is doubly periodic, then f’ is doubly periodic. Therefore, (2) applied to

f'/f yields
271 Z ord,, f = 2mi Z Res,, (%) =0.

weF weF

SO

This proves (3).
For (4), we have

271 Z w - ord,, f = 27 Z Resy, 2 (f%) = zf?/dz.

weF weF
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However, in this case, the function zf’/f is not doubly periodic. The integral
may be written as a sum of four integrals, as in the proof of (2). The double
periodicity of f and f’ yield

O N O
/Wff(a dz‘/wf T

- / ZJ;g)) de e / J}/g)) +

1)
2rwi Jo  f(2)

is the winding number around 0 of the path

dz

z = f(tws), 0<t<1.

Since f(0) = f(w2), this is a closed path. The winding number is an integer,

SO
“ e[ )
RS ey e =l
= —w ; ) J;(f)) dz € 2midw,.
Similarly, . .
/w2 Zf(z)dz+/wlzf(z)d262 1Zwo.
Therefore,

2mi Z w-ord, f € 2milL.
weF

This proves (4).

To prove (5), let zyp € C. Then h(z) = f(2) — 2o is a doubly periodic
function whose poles are the same as the poles of f. By (3), the number
of zeros of h(z) in F' (counting multiplicities) equals the number of poles
(counting multiplicities) of h, which is n. This proves (5).

For (6), suppose f has only a simple pole, say at w, and no others. Then
Res, f # 0 (otherwise, the pole doesn’t exist). The sum in (2) has only one
term, and it is nonzero. This is impossible, so we conclude that either the
pole cannot be simple or there must be other poles.

REMARK 9.2 As we saw in the proof of (5), part (3) says that the number
of zeros of a doubly periodic function equals the number of poles. This is a

general fact for compact Riemann surfaces (such as a torus) and for projective
algebraic curves (see [42, Ch. 8, Prop. 1] or [49, II, Cor. 6.10]).
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If (6) were false for a function f, then f would give a bijective (by (5)) map
from the torus to the Riemann sphere (= CUoo). This is impossible for many

topological reasons (the torus has a hole but the sphere doesn’t).

So far, we do not have any examples of nonconstant doubly periodic func-
tions. This situation is remedied by the Weierstrass p-function.

THEOREM 9.3
G iven a kttce L, define the W elerstrass @ -finction by

o) = ot =5+ (=op - 2) 9.1)

T hen

1. The sum defining p(z) converges absolutely and uniform Iy on com pact
sets not containing elem ents of L.

2. p(z) is m erom orphic In C and has a doubk pok ateach w € L.
3. p(—2) = p(z) Prallz € C.
4. p(z4+w) =p(z) brallw € L.

5. The set of doubly pericdic functions for L is C(p, ¢’). In other words,
every doubly periodic function is a rational finction of p and its deriva-
tive o' .

PROOF Let C be a compact set, and let M = Max{|z|| z€ C}. If z€ C
and |w| > 2M, then |z — w| > |w|/2 and |2w — z| < 5|w]|/2, so

1 2w —2)
(z —w)?  w? (z — w)?w?
M(G5lw|/2)  10M (9-2)
WL~ P

The preceding calculation explains why the terms 1/w? are included. With-
out them, the terms in the sum would be comparable to 1/w?. Subtracting
this 1/w? makes the terms comparable to 1/w3. This causes the sum to con-
verge, as the following lemma shows.

LEMMA 9.4
Ifk > 2 then

>
jw!
weL
w#0
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aonverges.

PROOF Let F be a fundamental parallelogram for L and let D be the
length of the longer diagonal of F'. Then |z| < D for all z € F. Let w =
miwy + mows € L with |w| > 2D. If 1, o are real numbers with m; < x; <
m; + 1, then w and zjw; + zows differ by an element of F', so

1
|miws + mows| > |r1w1 + Tows| — D > |x1w1 + zows| — §\m1w1 + maows,
since |miwy + mows| > 2D. Therefore,
2
|m1w1 + m2w2| > §|x1w1 —+ x2w2|.

Similarly,
|x1w1 + .CBQWQl Z D.

Comparing the sum to an integral yields
1 3/2)*
Z 5 < (1/area of F) // (3/2) dxidxs.

|wl |z w1 + Tows |k
|w|22D |£L’1w1+1‘2LLJ2|ZD

The change of variables defined by u + v = 1w + xows changes the integral

’ 0// L dud C/%/Ooldd9<
— 55 auav = —rar 0
(w2 + )7 =0 Jrep 7T |

|utiv|>D

where C' = (3/2)*/(area of F). Therefore, the sum for |w| > 2D converges.
Since there are only finitely many w with |w| < 2D, we have shown that the

sSum converges. I

Lemma 9.4 and Equation 9.2 imply that the sum of the terms in Equa-
tion 9.1 with |w| > 2M converges absolutely and uniformly for z € C. Since
only finitely many terms have been omitted, we obtain (1). Since a uniform
limit of analytic functions is analytic, p(z) is analytic for z ¢ L. If z € L,
then the sum of the terms for w # z is analytic near z, so the term 1/(z —w)?
causes p to have a double pole at z. This proves (2).

To prove (3), note that w € L if and only if —w € L. Therefore, in the sum
for p(—z), we can take the sum over —w € L. The terms of this sum are of

the form
1 1 1 1

(—2+w)? (—w)? (z-w)? w?
Therefore the sum for p(—z) equals the sum for p(z).
The proof of (4) would be easy if we could ignore the terms 1/w?, since
changing z to z + w would simply shift the summands. However, these terms
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are needed for convergence. With some care, one could justify rearranging the
sum, but it is easier to do the following. Differentiating p(z) term by term
yields

pl(z)=-2) ﬁ

Note that w = 0 is included in the sum. This sum converges absolutely (by
comparison with the case K = 3 in Lemma 9.4) when z ¢ L, and changing z
to z + w shifts the terms in the sum. Therefore,

oz +w) = ¢(2).
This implies that there is a constant ¢, such that
p(z +w) — p(2) = co,
for all z ¢ L. Setting z = w/2 yields
cw = p(-w/2) — p(w/2) =0,

by (3). Therefore p(z + w) = p(z). This proves (4).
Let f(z) be any doubly periodic function. Then

f(2) = f(2) +2f(—Z) L @) —2f(—Z)

expresses f(z) as the sum of an even function and an odd function. Therefore,
it suffices to prove (5) for even functions and for odd functions. Since p(—z) =
p(z), it follows that ¢'(—z) = —¢'(2), so ©'(z) is an odd function. If f(z)
is odd, then f(z)/¢'(z) is even. Therefore, it suffices to show that an even
doubly periodic function is a rational function of p(z).

Let f(z) be an even doubly periodic function. We may assume that f is
not identically zero; otherwise, we’re done. By changing f, if necessary, to

af +b
cf+d

for suitable a, b, ¢, d with ad — be # 0, we may arrange that f(z) does not have
a zero or a pole whenever 2z € L (this means that we want f(0) # 0, co and
f(wi/2) #0fori=1,2,3). If we prove (af+0b)/(cf+d) is a rational function
of p, then we can solve for f and obtain the result for f.

Since f(z) is even and doubly periodic, f(ws — z) = f(2), so

ord,, f = ordg,—w f.

We can therefore put the finitely many elements in F' where f(z) = 0 or
where f(z) has a pole into pairs (w,ws — w). Since we have arranged that
w # ws/2, the two elements of each pair are distinct. There is a slight
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problem if w lies on a side of F. Suppose w = zw; with 0 < z < 1. Then
w3 —w = (1 —x)w; + we € F. In this case, we translate by ws to get
(1—x)wy € F. Since w # w1/2, we have x # 1/2, hence xw; # (1 —x)wy, and
again the two elements of the pair are distinct. The case w = xws is handled
similarly.

For a fixed w, the function p(z) — p(w) has zeros at z = w and z = w3 — w.
By Theorem 9.1(5), these are the only two zeros in F' and they are simple
zeros. Therefore, the function

hz = [ ((2) - plw)™

(w, wz—w)

(the product is over pairs (w,ws — w)) has a zero of order ord, f at w and
at w3 — w when ord, f > 0 and has a pole of the same order as f when
ord,, f < 0. Since > ord, f = 0 by Theorem 9.1, the poles at z € L of the
factors in the product cancel. Therefore, f(z)/h(z) has no zeros or poles in F'.
By Theorem 9.1(1), f(z)/h(z) is constant. Since h(z) is a rational function

of p(z), so is f(z). This completes the proof of Theorem 9.3.
In order to construct functions with prescribed properties, it is convenient

to introduce the Weierstrass o-function. It is not doubly periodic, but it
satisfies a simple transformation law for translation by elements of L.

PROPOSITION 9.5

Let . ) ,
o(z) =0z L) == [] (1-2)elermritrm?,
weL w
w#0
T hen

1. 0(z) isanalytic forallz € C

2. 0(z) has sim pk zeros at each w € L and has no other zeros

3. Lo logo(z) = —p(2)

4. given w € L, there exist a = a,, and b = b, such that
o(z 4 w) = e o (2)

forallz € C.

PROOF The exponential factor is included to make the product converge.
A short calculation yields the power series expansion

(1-— u)e““L%“Q =1+ cgu 4+ cqut + .
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Therefore, there is a constant C' such that
(1 —w)e 2% — 1] < Cluf?

for u near 0. In particular, this inequality holds when u = z/w for |w| suffi-
ciently large and z in a compact set. Recall that if a sum ) |a,| converges,
then the product [[(14a,,) converges. Moreover, if (1+a,,) # 0 for all n, then
the product is nonzero. Since Y |z/w|® converges by Lemma 9.4 with k = 3,
the product defining o(z) converges uniformly on compact sets. Therefore,
o(z) is analytic. This proves (1). Part (2) follows since the product of the
factors, omitting one w, is nonzero at z = w.

To prove (3), differentiate the logarithm of the product for o(z) to obtain

d 1 1 1 z
—loga(z):Z—F + =+ .

dz z—w w  Ww?

Taking one more derivative yields the sum for —p(z). This proves (3).
Let w € L. Since
d? o(z + w)
log
dz? o(2)

there are constants a = a,, and b = b, such that

=0,

o(z + w)
o(2)
Exponentiating yields (4). We can restrict z in the above to lie in a small re-

gion in order to avoid potential complications with branches of the logarithm.
Then (4) holds in this small region, and therefore for all z € C, by uniqueness

log =az +b.

of analytic continuation.

We can now state exactly when a divisor is a divisor of a function. The
following is a special case of what is known as the Abel-Jacobi theorem,
which states when a divisor on a Riemann surface, or on an algebraic curve,
is the divisor of a function.

THEOREM 9.6
Let D = ) n;[w;] be a divisor. Then D is the divisor of a function if and
only ifdeg(D) =0 and > nw; € L.

PROOF  Parts (3) and (4) of Theorem 9.1 are precisely the statements
that if D is the divisor of a function then deg(D) = 0 and > n;w; € L.
Conversely, suppose deg(D) =0 and Y nw; = ¢ € L. Let

= —U(Z) o(z —w;)"™
1= 5% 25 ot - v
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If we L, then
f(Z + w) _ eawz—l—bw—aw(z—ﬁ)—bw 62 ni(aw(z—w;)+by) _ 1’
f(z)
since » 'n; = 0 and Y n;w; = {. Therefore, f(z) is doubly periodic. The
divisor of f is easily seen to be D, so D is the divisor of a function. |

Doubly periodic functions can be regarded as functions on the torus C/L,
and divisors can be regarded as divisors for C/L. If we let C(L)* denote the
doubly periodic functions that do not vanish identically and let Div’(C/L)
denote the divisors of degree 0, then much of the preceding discussion can be
expressed by the exactness of the sequence

sum

0— C* — (L) & di(Cc/L) ™ ¢/L — 0. (9.3)

The “sum” function adds up the complex numbers representing the points in
the divisor mod L. The exactness at C(L)* expresses the fact that a function
with no zeros and no poles, hence whose divisor is 0, is a constant. The
exactness at Div'(C/L) is Theorem 9.6. The surjectivity of the sum function
is easy. If w € C, then sum([w] — [0]) = w mod L.

9.2 Tori are Elliptic Curves

The goal of this section is to show that a complex torus C/L is naturally
isomorphic to the complex points on an elliptic curve.

Let L be a lattice, as in the previous section. For integers k > 3, define the
Eisenstein series

G = Gk(L) = Z wk, (9.4)

By Lemma 9.4, the sum converges. When k is odd, the terms for w and —w
cancel, so G = 0.

PROPOSITION 9