
Introduction into the Error-Correcting Codes

Oleg Fomenko

February 2025

1 Introduction

Error-correcting codes (ECC) are a group of protocols that wrap the input data extending it with
an excessive information that allows recovery of the original data even if the received message contains
errors. Such methods are widely used in the network protocols and data storage approaches. Moreover,
they found many applications in the modern cryptographic protocols (for example, Reed-Solomon ECC
has been applied in the FRI protocol, which is widely used in ZK-STARKs). Additionally, each code
allows the determination of what errors exactly appeared in the received message (sometimes, even if
the message can not be decoded).

ECC protocols can be divided in two groups: block codes and convolutional codes. The block
codes split information into the blocks of fixed pre-defined size and apply encoding to each block sep-
arately, while the convolutional codes work over the input data stream of an arbitrary size. Modern
practical block codes allow encoding by polynomial complexity algorithms depending on the block size.
Also, most of classic block codes leverage the properties of the finite fields.

In this article we primarily describe the structure of some classic block ECCs, including Walsh-
Hadamard code and Reed-Solomon code. Its aim is to give the reader an understanding of how they
work and the mathematical primitives they rely on.

2 Preliminaries

First of all let’s define the main property of each ECC that directly determines its structure:

Definition 2.1 For the arbitrary binary strings of fixed length x, y ∈ {0, 1}n we define an absolute
Hamming distance as the number of elements where our binary strings do not match: ∆(x, y) = |{i :
xi ̸= yi}|. We also define the normalized Hamming distance as the absolute Hamming distance
divided by the length of the string: ∆(x, y) = 1

n |{i : xi ̸= yi}|.

The normalized Hamming distance becomes very useful because of its independence on the codeword
length, while the absolute Hamming distance is useful for understanding the practicalities of specific
implementation.

Next, we can define what exactly a block ECC is. Basically, it operates over some field (GF(2) for
example) encoding information using some algorithm that differs for each code.

Definition 2.2 According to the [AB09] for each δ ∈ [0, 1] we call a function E : {0, 1}n → {0, 1}m
an error-correcting code with distance δ if for each two input strings x ̸= y ∈ {0, 1}n the distance
between their images is more or equal δ: ∆(E(x), E(y)) ≥ δ. We call Im(E) the set of codewords of
corresponding code.

Thus, each block ECC that takes an input word of size n and outputs a codeword of size m can theo-
retically deal with t = m − n errors. A block ECC also utilizes a relation between its distance and its
theoretical correcting capability: t < ⌊ δ−1

2 ⌋, where δ is an absolute distance. This relation exists because
two arbitrary codewords can be decoded if they contain at most t errors. Therefore, the distance between
these codewords must be at least 2t to enable unique decoding (if it is less then two different codewords
with errors can be represented as the same message, so the pre-image cannot be found correctly). While
the ECC distance is d, it leads to the relation above (check Figure 1).

1

Figure 1: Relation between distance and the number of possible errors

3 Walsh-Hadamard code

The Hadamard code [MS77], named after French mathematician Jacques Hadamard, is an error-correcting
block code designed for detecting and correcting errors in message transmissions over highly noisy or
unreliable channels. In 1971, NASA utilized this code to send images of Mars from the Mariner 9 space
probe back to Earth. This code is also referred to as the Walsh code, Walsh family, or Walsh–Hadamard
code, in honor of American mathematician Joseph Leonard Walsh.

Definition 3.1 (Walsh-Hadamard code) For the binary strings x, y ∈ {0, 1}n let’s define ⟨x, y⟩ =∑n−1
i=0 xiyi mod 2. The Walsh-Hadamard code is a function WH : {0, 1}n → {0, 1}2n that maps each

input of size n into the string z ∈ {0, 1}2n where zy = ⟨x, y⟩ for ∀y ∈ {0, 1}n.

Encoding. For example, for the input size n = 2 we have the following set of the possible codewords:

{(0, 0), (0, 1), (1, 0), (1, 1)}

Then, for each input codeword the Walsh-Hadamard code will be:

WH(x) = (⟨x, (0, 0)⟩, ⟨x, (0, 1)⟩, ⟨x, (1, 0)⟩, ⟨x, (1, 1)⟩)

For example, taking x = (0, 1) we have:

WH((0, 1)) =

⟨(0, 1), (0, 0)⟩
⟨(0, 1), (0, 1)⟩
⟨(0, 1), (1, 0)⟩
⟨(0, 1), (1, 1)⟩

 = (1, 0, 0, 1)

Decoding. To decode a received codeword, we use the following technique: for each possible input word
x ∈ {0, 1}n we calculate the list of Cx(y) = (−1)⟨x,y⟩ for each y ∈ {0, 1}n. We also represent our received

codeword Y as list of (−1)Yi . For each possible word u ∈ {0, 1}n we calculate S(u) =
∑2n−1

i=0 (−1)Yi ·Cu(i).
This sum represents the similarity between the word u and the encoded word. If both words have the
same sign at position i, the sum increases; otherwise, it decreases. The decoded word is the one with
the highest sum.

To define the distance for the Walsh-Hadamard ECC we first need to prove an additional lemma:

Lemma 3.1 (Random subsum principle) For two binary strings u ̸= v ∈ {0, 1}n the Pr[⟨u, x⟩ ≠
⟨v, x⟩] = 1

2 for the random binary string x ∈ {0, 1}n.

Proof. Note, that ⟨u, x⟩ ̸= ⟨v, x⟩ works if and only if 1 = ⟨u, x⟩ + ⟨v, x⟩ = ⟨(u + v), x⟩, where + is an
addition by modulo 2 (aka XOR). Then, we can rewrite this as ⟨(u+ v), x⟩ =

∑
(u+v)i ̸=0 xi mod 2. While

u+ v ̸= 0n from the initial assumption and x is a uniformly random string, the
∑

(u+v)i ̸=0 xi mod 2 = 1

with probability 1
2 . So, finally, ⟨u, x⟩ ≠ ⟨v, x⟩ with probability 1

2 . △

2

Lemma 3.2 The Walsh-Hadamard code is an error-correcting code with distance 1
2 .

Proof. Taking two codewords f(x1) and f(x2) the absolute distance between them is equal to the
number of y ∈ {0, 1}n where ⟨x1, y⟩ ≠ ⟨x2, y⟩. We know that this happens in the half of the cases, so for

a codeword of size 2n the distance will be ∆(f(x1), f(x2)) =
2n−1

2n = 1
2 . △

This code made a significant impact on the coding theory, mathematics, and theoretical computer
science. However, it is impractical for modern applications due to the exponential growth in the size of
the codewords.

4 Reed-Solomon code

In information and coding theory, Reed–Solomon ECCs are a group of block error-correcting codes devel-
oped by Irving S. Reed and Gustave Solomon in 1960. They are widely used across various applications,
including consumer technologies like MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, and Data Ma-
trix. They also play a crucial role in data transmission systems such as DSL and WiMAX, broadcast
technologies like satellite communications, DVB, and ATSC, as well as storage solutions such as RAID6.
Essentially, the difference between the variants Reed-Solomon code lies in the assumptions on the basis
of which their encoding and decoding algorithms are determined.

Firstly, let’s start from the definition of the input data that differs from binary:

Definition 4.1 For some alphabet Σ elements x, y ∈ Σn we define ∆(x, y) = 1
n |{i : xi ̸= yi}|.

Now we can describe error-correcting codes for the alphabets that differ from binary. Also, let’s describe
one subclass of the block ECCs to which the Reed-Solomon code belong:

Definition 4.2 (Linear code) Linear code is a code where the set of codewords forms a linear space:

– For each two codewords c1, c2, the c1 + c2 is also a codeword.

– For the codeword c and constant α the αc is also a codeword.

Theorem 4.1 Let the weight of a codeword be the number of positions where its value is non-zero.
Then, the distance of the linear error-correcting code is equal to the minimum possible weight of non-zero
codeword.

Proof. For two codewords c1, c2, the c1−c2 is also a codeword. Note, that ∆(c1, c2) = w(c1−c2), where
w(x) = |{i : xi ̸= 0}| is a weight function and subtraction is done by modulo 2 over binary elements.
Thus, the distance of the linear error-correcting code will be equal to the minimum possible distance
between two non-equal codewords that is also equal to the minimum possible weight of the non-zero
codeword:

δ = min
c1 ̸=c2

∆(c1, c2) = min
c1 ̸=c2

w(c1 − c2) = min
c ̸=0

w(c)

△ Note, that the Walsh-Hadamard code is also a linear code, so we can prove its distance using this
approach as well.

Definition 4.3 (Reed-Solomon code) For a field F and numbers 0 < n ≤ m < |F| the Reed-
Solomon code is a function Fn → Fm that takes n − 1 degree polynomial A(x) ∈ F[x] and outputs
its evaluation over m points f0, ..., fm−1 ∈ F.

Lemma 4.2 The Reed-Solomon code has distance of 1− n−1
m

Proof. The word is a polynomial of degree less then n so it can have no more then n − 1 roots. The
codeword is the evaluation of this polynomial at m > n distinct points, meaning it must contain at least
m−(n−1) non-zero values (since at most n−1 points can be the roots of our word polynomial). Since the
Reed-Solomon code is a linear code, we can use its property to define its distance as δ = m−n+1

n = 1− n−1
m .

△
By following the “Unisolvence theorem” we know that to recover n − 1 degree polynomial we need

at least n points for interpolation. Because the Reed-Solomon code performs polynomial evaluation over
m > n points we can still interpolate (or decode) the polynomial even if some points are corrupted during
data transmission.

3

Theorem 4.3 There exists a polynomial-time (depending on the codeword size) algorithm with the fol-
lowing properties:

– Input: a list of pairs (ai, bi)
∣∣m−1

0
of elements in F such that for t̂ > m

2 + n
2 of them G(ai) = bi for

some unique polynomial G(x) with degG(x) = n− 1.

– Output: a polynomial G(x) with degG(x) = n− 1.

Proof. The assumption t̂ > m
2 + n

2 can be transformed into the corresponding constraint on the number
of possible errors t:

t = m− t̂ < m− m

2
− n

2
=

m

2
− n

2

Let’s also evaluate a necessary constraint that will be useful in the algorithm below:

t <
m

2
− n

2
2t < m− n

m > 2t+ n

So, we know the lower bound of the codeword size depending on the word and number of errors: m ≥
2t+ n+ 1.

Algorithm 1 Berlekamp-Welch decoding [BW86]

So, G(ai) = bi for at least t̂ of m pairs. We also know that degG(x) = n− 1 and t < m− n.
It means that we already can recover polynomial but we firstly have to deal with an errors.

Let’s put an error polynomial E(X) a polynomial which has roots at the error points.

So, degE(x) = t < m
2 − n

2 .

Our algorithm is based on the following equation:

C(ai) = G(ai) · E(ai)
∣∣m−1

i=0

where C(x) is an arbitrary polynomial that we are going to find.

Note, that degC(x) = degG(x) + degE(x) = n− 1 + t

Then, by solving the equation C(ai) = bi · E(ai)
∣∣m−1

i=0
we can find C(x) and E(x).

This can be considered as a set of m linear equations where we have unknown n+ t coefficients
of C(x) and t+ 1 coefficient of E(x), so it can be solved via linear algebra while m ≥ 2t+ n+ 1.

Finally, we put G(x) = C(x)
E(x)

The last equation follows from the observation that polynomial C(x)−G(x) ·E(x) is zero in t̂ points
while it has degree n+ t− 1. It is easy to prove that the polynomial degree less then the number of it’s
roots, so C(x)−G(x) ·E(x) is zero for each x. That is why from C(x) = E(x)G(x) follows that C(x) is
divisible on E(x). △

4.0.1 Reed-Solomon(255,223) implementation

The example implementation on SageMath aims to help reader to understand how the encoding and
decoding look like. The Reed-Solomon code with m = 255, n = 223 is widely used in communication
and storage systems, including QR codes, CDs, DVDs, and deep-space communication. It operates over
GF(256) (the finite field of 256 elements) and encodes data as polynomials evaluated at different field

4

elements. Following our theorem, the number of errors is constrained as t < m
2 − n

2 which means that
t < 16. For our implementation we take t = 15.

Let’s start from the basic parameters definition:

F = GF(256)
R.<x> = PolynomialRing (F) # de f i n e x as a GF(256) element
m = 255 # A codeword s i z e
n = 223 # A word s i z e
t = 15 # The number o f p o s s i b l e e r r o r s
d i s t anc e = (m − n + 1)/m

The distance then is equal to 11
85 . Let’s sample a random message that will be an information polynomial

of degree n = 223 (this messsage can be obtained by the interpolation of some useful data):

word = sum(F . random element () ∗ xˆ i f o r i in range (n))

We start encoding from defining the evaluation elements that will be all non-zero elements of GF(256).
Then, our codeword will be the m = 255 evaluations of our information polynomial.

Al l non zero e lements in F . Order (F) − 1 = 255
f = [f i f o r f i in F i f f i != 0]
a s s e r t l en (f) == m
codeword = [word (f i) f o r f i in f]
a s s e r t l en (codeword) == m

To decode the codeword we should solve the system of m equations C(xi) − bi · E(xi) = 0. Note, that
this system is homogeneous, so the trivial solution (all zeros) is always a solution. To find a non-zero
solution we impose a normalization condition, such as setting the leading coefficient of E(x) to 1. This

turns our original equation into the C(xi)− bi · E(xi) = bi · xdegE
i .

deg C = 237 # deg = n − 1 + t
deg E = 15 # deg = t

M = Matrix (F , m, deg C + deg E + 1)
f o r i , (f i , b i) in enumerate (z ip (f , codeword)) :

F i l l in c o e f f i c i e n t s f o r C(x)
f o r j in range (deg C + 1) :

M[i , j] = f i ˆ j
F i l l in c o e f f i c i e n t s f o r E(x) , mu l t i p l i e d by −b i
f o r j in range (deg E) :

M[i , deg C + 1 + j] = −b i ∗ (f i ˆ j)

rhs = vecto r (F , [b i ∗ (f i ˆdeg E) f o r f i , b i in z ip (f , codeword)])
Solve the l i n e a r system over F
s o l u t i o n = M. s o l v e r i g h t (rhs)
a s s e r t l en (s o l u t i o n) == deg C + deg E + 1

Finally, we can recover the original information polynomial G(x) = C(x)
E(x) . We also should not forget to

add the normalized leading coefficient of E(x).

C = sum(s o l u t i o n [i] ∗ xˆ i f o r i in range (deg C + 1))
E = sum(s o l u t i o n [deg C + 1 + i] ∗ xˆ i f o r i in range (deg E))
E += x ˆ deg E
G = C/E
a s s e r t G. numerator () == word

To discrover the error correcting properties of the presented code you can add the following snippet
after the codeword calculation. It changes first t elements of codeword to the random GF(256) elements.
If you try to change more elements then the linear system solving procedure will fail.

5

f o r i in range (t) :
codeword [i] = F . random element ()

5 Convolutional codes

A convolutional code is an ECC that utilizes the following properties:

– For each k input bits it generates n > k output bits;

– The transformation also depends on the m previous bits;

– The ECC function is linear: for two inputs x, y, corresponding ECC’s outputs X,Y and scalars
a, b the following holds:

ax+ by = aX + bY

For example, the linear-feedback shift register (LFSR) ECC [Gol67] for each k input bits provides
n output bits while remembering m previous bits to use during the encoding process.

Definition 5.1 (Convolutional rate) We call a code rate as the ratio between the input and output
sizes:

R =
k

n

For example a rate 1
3 means that for each input bit the code will generate 3 output bits. Usually, LFSR

operates with rates 1
2 or 1

3 . Each LFSR code defines the output function per each output bit that defines
how it will be calculated. Usually, this function uses XOR over the pre-defined positions of the previously
read values to generate the output (initially they are all zeros). So, during each iteration of the LFSR, it
reads the next bit (or k bits) of the input (which is equivalent to shifting the whole sequence to the right,
which allows to add incoming bits from the left), updates the state of the already read bits (utilizing the
first-in-first-out over the queue of size m) and calculates n output bits.

To decode the output, convolutional codes utilize different algorithms (for example the Sequential
Decoding [Woz57] or Viterbi algorithm [Vit67]), including, but not limited to, heuristic and probabilistic
algorithms. All of them differ in computational complexity and correctness of the result.

References

[Woz57] John M. Wozencraft. Sequential Decoding for Reliable Communication. Tech. rep. Technical
Report 325. Research Laboratory of Electronics, MIT, 1957.

[Gol67] Solomon W. Golomb. Shift Register Sequences. Holden-Day, 1967.

[Vit67] Andrew J. Viterbi. “Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm”. In: IEEE Transactions on Information Theory 13.2 (1967), pp. 260–269.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland
Publishing Company, 1977.

[BW86] Elwyn R. Berlekamp and Lloyd R. Welch. “Error Correction for Algebraic Block Codes”.
Patent US 4,633,470. Dec. 1986.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. isbn: 978-0-521-42426-4. url: https://theory.cs.princeton.edu/
complexity/book.pdf.

6

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf

	Introduction
	Preliminaries
	Walsh-Hadamard code
	Reed-Solomon code
	Reed-Solomon(255,223) implementation

	Convolutional codes

