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1 Introduction

The evolution of blockchain technology includes a huge variety of approaches to maximize privacy and
anonymity during the assets transfer. Clearly, true privacy must rely on strong time-proven cryptogra-
phy and decentralization to achieve zero information sharing about the sender, receiver, and the amount
of assets transferred. These requirements, combined with the default transparency of the blockchain,
produces a real challenge for developers to create a system that users can trust their money. So, it is
not surprisingly that a lot of privacy solution exists.

Monero – a cryptocurrency focused on privacy, employs a technology called Ring Confidential
Transactions (RingCT) [Noe15] to enhance the anonymity of its users. Built on top of Confidential
assets and Bitcoin UTXO model, RingCT ensures that transaction amounts in UTXOs are hidden and
sender-receiver identities remain untraceable, setting Monero apart from other cryptocurrencies like Bit-
coin. By using a combination of ring signatures and stealth addresses, RingCT allows private and secure
transfers without revealing any transaction details to the outside observers.

In this paper, we describe the primitives on which the RingCT protocol relies. It covers the Pedersen
commitments, Confidential assets, stealth addresses, ring signatures and the form of RingCT transaction.

2 Preliminaries

Notation. We denote by G a cyclic group of prime order p written additively. We write the elements
in G with capital letters (G,H, ...) and scalars in Fp with lower case letters (a, b, c, ...).

Discrete Logarithm Relation Problem. The discrete logarithm relation problem in G is hard if
for a randomly chosen a ∈ Fp, such that A = aG, given the point A, the probability of finding a from A
is negligible.

2.1 Commitment

Commitment scheme is an approach to encode some data that will be stored hidden until user decides
to unhide it. Commitment scheme in general is defined as follows:

• Com(x, r)→ C accepts on the input value x and user randomness (blinding) r and outputs value
C that is referred to commitment.

A commitment scheme is called secure if it satisfies the following properties:

• Blinding : For the commitment scheme it is hard to find such two pairs x1, r1 and x2, r2 that
Com(x1, r1) = Com(x2, r2).

• Hiding : While r is generated with a proper randomness source, a commitment C does to reveal
any information about x (even if x can be guessed with high probability).
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The simplest example of the cryptographic commitment scheme is a hash function H:

Com(x, r) = H(x||r)

2.2 Pedersen commitment

The Pedersen commitment [Ped91] schemes is a cryptographic primitive that allows to commit to
the scalar value in the additive group element. It is defined with respect to the two fixed additive group
elements G,H ∈ G as follows:

Com(x, r) = xH + rG ∈ G

where r ∈ Fp is a commitment blinding (big random scalar), x ∈ Fp – committed value, G,H ∈ G –
group generators.

While defined over the additive group, Pedersen commitments allow addition between committed
values that holds binding and hiding properties:

Com(x1, r1) + Com(x2, r2) = Com(x1 + x2, r1 + r2)

2.3 Pedersen commitment security

Pedersen commitment satisfies both the security properties of binding and hiding for the robust additive
group G where the discrete logarithm relation problem is hard.

Also, while utilizing two different generators to construct commitments it is required that nobody
knows the relation between generators H and G (such k that kG = H). Otherwise, it can be used to
manipulate committed value as follows:

xH + rG = x · kG+ rG = (x+ 1)kG+ (r − k)G = (x+ 1)H + (r − k)G

So, for any selected G point, each protocol using Pedersen commitment must define H and prove
that it was chosen independently (aka Nothing-up-my-sleeve number). For example in Monero, authors
utilizes the following equation:

H = 8 ∗ to point(H(G))

where H is a special hash-function defined as H : G → Fp and to point is a special function that
maps a scalar into the curve point (for example by setting the scalar as x-coordinate and calculating
y-coordinate). Multiplication on 8 (size of smaller curve subgroup) is used to ensure that resulting point
lies in the bigger subgroup of the Ed25519 [Ber+08] curve.

3 Confidential assets

The Confidential assets [Poe+16] introduced a method enabling users to conceal the amounts of inputs
and outputs in their UTXOs. By combining Pedersen commitments and signature aggregation, it be-
comes feasible to hide balances while still verifying that the value in transaction inputs matches that of
the outputs.

3.1 UTXO

Launched in 2009, Bitcoin, as the pioneer of blockchain systems, introduces the concept of Unspent
Transaction Outputs (UTXO) for the storage organization. Under this approach, each UTXO stores the
output of a transaction that remains unspent, comprising a certain asset amount and the conditions for
spending. When a transaction occurs, it consumes one or more UTXOs as inputs and creates new UTXOs
as outputs, effectively transferring ownership of tokens. Also, during the transaction, it is important to
verify that the following two requirements are met:

1. The sum of UTXO at the output is the same (or less) than at the input.

2. All input UTXOs are authorized for spending and have not been spent previously.
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3.2 Hidden amounts

In general, for the given token amount a user owns a commitment stored in UTXO of form:

Com(a, r) = aH + rG = C ∈ G

Because of the additive nature of Pedersen commitments it becomes possible to perform addition and
subtraction operations on them. This allows us to prove the correctness of the transaction without
revealing of any information about amounts. In particular, we can check that sum of the input amounts
in transaction is equal to the sum of outputs by calculating∑

Ci∈in

Ci −
∑

Cj∈out

Cj = (ain − aout)H + (rin − rout)G

If the transaction is correct, then

(ain − aout)H + (rin − rout)G = 0H + (rin − rout)G

Now, it becomes possible for the sender and receiver to prove the knowledge of rin and rout by generation
of the aggregated signature for (rin − rout)G public key. Note, that this signature can be produced only
in case of correct amounts and knowledge of the openings for the commitments, otherwise the probability
to broke the protocol is equal to the discrete logarithm problem.

3.3 Range proofs

Unfortunately, it is not enough to produce only an aggregated signature to prove the transaction cor-
rectness. Let’s observe a simple example: for the group with order p = 10 let’s take C1 = 5H + r1G for
the input and C2 = 9H+ r2G,C3 = 6H+ r3G for the outputs. It’s easy to check that difference between
input and output commitments produces 0H term because of the group law and then it is possible to
generate an aggregated signature while the transaction is still incorrect.

To solve this problem sender have to generate a zero-knowledge range-proofs that all amounts in
the commitments lies in some range. Zero-knowledge means that no information about amounts will be
revealed. The range for proving should be selected in a such way that it will not be possible to generate
such transaction where

∑
ai∈amounts ai >= p. For example, while working in the 2256 field in often

enough to prove that all amount lies in [0; 264) range.
The original Confidential assets used to implement Back-Maxwell range-proof protocol, but for the

modern systems it is preferred to use more effective protocols such as Bulletproofs protocols family.

4 Ring signatures

The ring signature is a signature protocol in which, using a set of public keys (ring) R, some of its
members can sign the message m without revealing any information about who exactly it was. It is hard
to underestimate the importance of such a protocol in providing anonymity to users when transferring
assets.

The simplest ring signature scheme[RST01] uses encryption protocols (RSA[RSA77] for example) to
prove that bitwise xor over all encryption of provided scalars array is equal to zero (according to this
protocol, one of the element in an array for the corresponding known private key will be calculated to
satisfy our xor equation). More complex and flexible ring signatures can be built as a modification of
Schnorr identification protocol[Sch89].

Let’s describe the form of Schnorr signature that will be later modified:
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Function 1 Schnorr signature protocol

Input: Signer private key k, public key K = kG, message m.

Proving:

Select random key a← Fp and public A = aG

Calculate challenge c = H(m,A)

Put the response r = a− kc

Put the signature as (c, r)

Verification:

Recover challenge c′ = H(m, [rG+ cK])

Check c = c′

4.1 SAG signature

The most trivial ring signature protocol built on top of Schnorr identification protocol is a Spontaneous
Anonymous Group (SAG) signature [LWW04]. Firstly, let’s define the ring as R = {K1,K2, ...,Kd}
where we know the private key kπ of the key with secret position π. Then, to generate the signature for
the message m where the signer belongs to the ring R we will go through the following protocol:

Function 2 SAG signature protocol

Input: Ring R = {K1,K2, ...,Kd}, private key kπ, public key Kπ = kπG on the secret position π in the
ring, message m.

Proving:

Select random key a← Fp and ri ← Fp for ∀i ̸= π

Put cπ+1 = H(R,m, [aG])

∀i = π + 1, π + 2, ..., d, 1, ..., π − 1 (replacing d+ 1→ 1)
calculate ci+1 = H(R,m, [riG+ ciKi])

Put the response rπ = a− cπkπ

Put the signature (c1, r1, ..., rd) and the ring R

Verification:

∀i = 1, 2, ..., d (replacing d+ 1→ 1)
calculate c′i+1 = H(R,m, [riG+ ciKi])

Check c1 = c′1.

4.2 bLSAG signature

Linkability is a property that describes relation between two signatures. For the protocols with such
property it becomes possible to check that two different signatures have been signed with the same public
keys. Linkability in a couple with anonymity property gives verifier an opportunity to check this relation
without revealing any information about signer.

Back’s Linkable Spontaneous Anonymous Group (bLSAG) signature protocol, as a mod-
ification of the described in previous post SAG protocol, introduces the ring signature witch follows
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anonymity and linkability properties. Before going thought the protocol let’s describe the special hash
function Hp(x) → G that gives as the result a point in curve (Discrete-Log problem can not be solved
with overwhelming probability). Then, for the given ring R = {K1,K2, ...,Kd} where we know the
private key kπ of the key with secret position π, bLSAG protocol can be defined as follows:

Function 3 bLSAG signature protocol

Input: Ring R = {K1,K2, ...,Kd}, private key kπ, public key Kπ = kπG on the secret position π in the
ring, message m.

Proving:

Calculate key image K̂ = kπ ·Hp(Kπ).

Select random key a← Fp and ri ← Fp for ∀i ̸= π

Put cπ+1 = H(m, [aG], [aHp(Kπ)])

∀i = π + 1, π + 2, ..., d, 1, ..., π − 1 (replacing d+ 1→ 1)
calculate ci+1 = H(m, [riG+ ciKi], [riHp(Ki) + ciK̂])

Put the response rπ = a− cπkπ

Put the signature (c1, r1, ..., rd), ring R and key image K̂

Verification:

Check p · K̂ = 0, where p = |G|

∀i = 1, 2, ..., d (replacing d+ 1→ 1)
calculate c′i+1 = H(m, [riG+ ciKi], [riHp(Ki) + ciK̂])

Check c1 = c′1.

Finally, if the two different signatures (even with different rings) have been produced by the same
signer then the both will have the same key images K̂. Note, that verification of p · K̂ = 0 is necessary to
ensure that point belongs to G group. If this relation is not satisfied it means that passed point belongs
to the other curve subgroup, which may affect the linkability property.

4.3 MLSAG signature

TheMultilayer Linkable Spontaneous Anonymous Group (MLSAG) signature protocol [Noe15]
provides an opportunity to generate signature with several signers while they are all still hidden in the
ring. So, given the ring R = {Ki,j} for i ∈ {1, 2, ...n} and j ∈ {1, 2, ...m} where we know the private keys
kπ,j for corresponding public keys Kπ,j with secret position π for j ∈ {1, 2, ...m}. Then, the MLSAG
protocol has a lot in common with bLSAG protocol:
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Function 4 MLSAG signing protocol

Input: R = {Ki,j} for i ∈ {1, 2, ...n} and j ∈ {1, 2, ...m}, private keys kπ,j , public keys Kπ,j = kπ,jG.

Proving:

Calculate key image K̂j = kπ,jHp(Kπ,j) for j ∈ {1, 2, ...m}

Select random key aj ← Fp for ∀j ∈ {1, 2, ...m}

For i ∈ {1, 2, ...n} \ π and j ∈ {1, 2, ...m} select random ri,j ← Fp

Put cπ+1 = H(m, [a1G], [a1Hp(Kπ,1)], [a2G], [a2Hp(Kπ,2)], ...)

∀i = π + 1, π + 2, ..., d, 1, ..., π − 1 (replacing d+ 1→ 1)
calculate ci+1 = H(m, [ri,1G+ ciKi,1], [ri,1Hp(Ki,1) + ciK̂1], ...)

Put response rπ,j = a− cπkπ,j for j ∈ {1, 2, ...m}

Put signature (c1, ri,j), ring R and key images K̂j

Verification:

Check ∀j ∈ {1, 2...m} : p · K̂j = 0, where p = |G|

∀i = 1, 2, ..., d (replacing d+ 1→ 1)
calculate c′i+1 = H(m, [ri,1G+ ciKi,1], [ri,1Hp(Ki,1) + ciK̂1], ...)

Check c1 = c′1.

Finally, if for the two different signatures S1 and S2 such indexes i, j exist that K̂S1,i = K̂S2,j then
these signatures are linked by signing with the same key.

In addition, using signatures linking and one-time stealth addresses Monero blockchain solves a
double-spending problem: if transaction contains the key image that already has been included into the
any block before then in seems to be a double-spending attack.

5 Stealth addresses

Stealth addresses [NMT16] is an approach to hide transaction receiver by calculating the one-time receiver
address. In general, receiver can share with sender two public keys (Kv = kvG,Ks = ksG) – view key
and spend key. Then, sender during the process of transaction creation will select a random value r that
generates a one-time recipient address by:

KO = Hash(rKv)G+Ks

Additionally, rG will be added to the transaction extra data and referred to the transaction public key.
Receiver, has to monitor all transactions and by utilizing the public transaction data (KO and rG) check
if:

Ks =? KO −Hash(kvrG)G

For the transactions that satisfied this relation user calculates the private key for the coins spending:

kO = Hash(kvrG) + ks

The security of this protocol lies on the discrete logarithm problem hardness as in the Diffie-Hellman
protocol, so nobody even with the knowledge of the sender and receiver public keys can match the
transaction between them.
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6 RingCT transaction

In the following section we mention Ca the Pedersen commitment referred to the amount a:

Ca = aH + xG

RingCT [Noe15] transaction utilized the model where the user’s balances is stored in pair of public
key and commitment ⟨Ka, Ca⟩ over UTXOs. So, imagine user wants to transfer some coins using output
from other transaction ⟨Ka

i , C
a
i ⟩ where i ∈ {1, ...,m} for the input and ⟨Kb

j , C
b
j ⟩ where j ∈ {1, ..., p} for

the output (Kb
i is a receiver one-time address and Cb

j = bjH + yjG).

To achieve additional confidentiality, user generates m pseudo-output commitments Ĉa
i with same

amounts but different blinding in a such way that∑
x̂i −

∑
yj = 0

It’s obvious that using such construction
∑

Ĉa
i −

∑
Cb

j = 0, so we can convince the verifier that sum of
input coins equals to the output. Also, note that for every i sender knows the private key for zero-value
commitment Ca

i − Ĉa
i = (xi − x̂i)G = ziG. Then, for every input i sender selects a random ring of size

v + 1 of form:

Ri = {{K1,i, [C1,i − Ĉa
π,i]},

...,

{Kπ,i, [C
a
π,i − Ĉa

π,i]},
...,

{Kv+1,i, [Cv+1,i − Ĉa
π,i]}}

User can generate a MLSAG signature using secrets for π position: kπ,j for public key Kπ,j and zj
for zero-value commitment Ca

π,i − Ĉa
π,i = (xπ,i − x̂π,i)G. Also, sender attaches the key image for his key

Kπ,i. Because this key should be a one-time address we can consider that it can be used only once. So,
if there is any included into the block transaction exist with same key image then we faced the try of
double-spending of some output. Finally, the RingCT transaction can be built as follows:

• type: RCTTypeBulletproof2

• inputs: for each input i ∈ {1...m}:
Ring R members
MLSAG signature
Key image
Pseudo output Ĉa

i

• outputs: for each output j ∈ {1...p}:
One time address KO

j

Output commitment Cb
j

Encrypted amount (see docs for more info)
Range proof that committed amount lies in [0..264) range

• fee

• extra: Transaction public key rG, etc.

In conclusion, to generate a RingCT transaction, for every input that sender spends, he creates
a random ring and selects the pseudo-output commitment with the same amount. Because of the
knowledge of randomness for the input and pseudo-output commitments, sender can generate a separate
ring signature for every ring and also, prove the range for the outputs. Encrypted amount in transaction
outputs is used by sender to share the commitment blinding with recipient in such way that only with
knowledge of view key and amount it can be decrypted.
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