
ZK-STARKs explained

Oleg Fomenko
Distributed Lab

July 2024

1 Introduction

ZK-STARK (Zero-Knowledge Scalable Transparent Argument of Knowledge) is a crypto-
graphic proof system that allows one party to prove to another the knowledge of a piece of informa-
tion without revealing the information itself, while ensuring scalability and transparency. Unlike ZK-
SNARKs, STARKs do not require a trusted setup, which enhances their security and trustworthiness.
ZK-STARK protocol utilizes advanced mathematical techniques like Fast Reed-Solomon IOP of Prox-
imity and Merkle trees to achieve this. The security of STARK lies on the difficulty of computing the
inverse function to the hash function, so we can consider STARK as a quantum-safe protocol.

In this paper, we describe the basic principles of the STARK protocol by building a proof of a simple
statement (knowledge of Fibonacci square sequence element) as an example.

1.1 Related work

We recommend to familiarize with the StarkWare documentation [Tea23] that also presents a good
explanation of how ZK-STARK protocol works. Our article, in turn, is based on the STARK-101
course from StarkWare which you can check out here: https://starkware.co/stark-101/. Also, we
recommend to read the Vitalik’s series of posts about STARKs: [But17b], [But17c], [But17a] and the
newest post about STARKs over Circle filed extansion [But24].

2 Preliminaries

Let’s denote by F the prime-order field of size N . Let’s also define F× the multiplicative group of N − 1
elements and w – any fixed primitive element in F×.

In this paper, we consider to describe STARKs using an example statement where we utilize N =
3∗230+1, but note, that in real cases you may want to select lager fields, for example 2251+17∗2192+1,
that also can be suitable for our example. The only requirement for the field F is to be able to select a
large multiplicative subgroup with order 2k.

2.1 Merkle trees

Commitment scheme is an approach to encode some data that will be stored hidden until user decides to
unhide it. We consider Merkle tree as a cryptographic construction that allows us to commit a large
amount of data into a single hash value. Structurally, a Merkle tree is a binary tree where each leaf
node holds the hash of a data block, while each non-leaf node contains the hash derived from it’s child
nodes. To reveal any leaf’s data, it’s value must be presented alongside the Merkle path (also known
as the Merkle proof). This combination enables anyone to verify that the hash of this data is indeed
committed in the tree.

3 STARK protocol

The Fibonacci square sequence is a sequence of elements defined as follows:

ai = a2i−1 + a2i−2

1

https://starkware.co/stark-101/

To describe how ZK-STARK protocol works we are going to explain how to prove the following statement:

• I know a field element x such that the 1023rd element of the Fibonacci square sequence starting
with 1 and x is 2338775057.

The private x in this case equals to 3141592.

3.1 Trace polynomial

We call trace a sequence of elements considered as a basis for our proof. This sequence contains private
and public values together and follows certain constraints. For our example, we put trace a sequence a
of first 1023 elements of the Fibonacci square sequence.

The trace is implied to be an evaluation of some unknown trace polynomial of degree |a| − 1 (to
follow the Unisolvence Theorem). We also call domain a sequence of values from F where we evaluate
our polynomials. To interpolate our trace polynomial we select as a domain a multiplicative subgroup
of 1024 elements from F×:

G = {gi | g = w3·220 ∧ i ∈ [0; 1024)}

Next, by using Lagrange interpolation over (gi, ai)
1022
0 points we compute a trace polynomial f ∈ F[x].

Note, that in practice, you may want to use more efficient algorithm for interpolation, for example – Fast
Fourier Transform (FFT) [But19].

3.2 Polynomial commitment

To commit our trace polynomial we use the special evaluation domain that is larger several times (ρ
times) then the polynomial degree. In our case we select a multiplicative subgroup of 8192 elements from
F×:

H = {hi | g = w3·217 ∧ i ∈ [0; 8192)}

Then, we define the evaluation domain as:

E = {w ∗ hi | ∀hi ∈ H}

We build a Merkle tree over the values f(ei), ∀ei ∈ E and name it’s root as a trace polynomial
commitment. This approach will also be used to commit other polynomials during the protocol walk-
through.

3.3 Constraints

The constraints are expressed as polynomials evaluated over the trace cells, which are satisfied if and
only if the computations are correct. Obviously, our initial statement consists of the following three
requirements:

1. The element a0 is equal to 1;

2. The element a1022 is equal to 2338775057;

3. Each element ai+2 is equal to a2i+1 + a2i mod N .

To verify that our committed trace polynomial satisfies all constraints, we can check that it has corre-
sponding roots. In particular, according to the selected interpolation points (gi, ai):

1. The element a0 is equal to 1 translated to: f(x)− 1 has root at x = g0 = 1;

2. The element a1022 is equal to 2338775057 translated to: f(x)− 2338775057 has root at x = g1022;

3. Each element ai+2 is equal to a2i+1 + a2i translated to: f(g2x) − f(gx)2 − f(x)2 has roots in
G \ {1021, 1022, 1023}

2

To ensure that the specified polynomials have roots in given values, we can use the following property:

if polynomial f(x) ∈ F[x] has root in x0 then the f(x)
x−x0

is also a polynomial in F[x]. So, we define the
following polynomial constraints:

p0(x) =
f(x)− 1

x− 1

p1(x) =
f(x)− 2338775057

x− g1022

p2(x) =
f(g2x)− f(gx)2 − f(x)2∏1020

i=0 x− gi

Unfortunately, the p2 polynomial still looks inconvenient to work with, so we may want to simplify it.
Using the following property we can reduce the denominator of p2:

x|G| − 1 =
∏
g∈G

(x− g),∀x ∈ G

This equation works because both sides are polynomials whose roots are exactly the elements of G. Note,
that while evaluating our polynomial on lager domain then G we should only ensure that the resulting
polynomial still holds the relation f(gi) = ai, so it is acceptable to use properties that only work over
G. So, finally we have:

p2(x) =
(f(g2x)− f(gx)2 − f(x)2)(x− g2021)(x− g2022)(x− g2024)

x2024 − 1

Note, that our constraints follow the obvious requirement: using only the given trace polynomial evalu-
ations for the certain x by the prover (f(x), f(gx) and f(g2x) in our example) the verifier can compute
the constrains polynomials pi(x) by itself.

3.4 Composition polynomial

To combine all our constraints into a single polynomial, we can follow a commonly used principle by
taking a linear combination with the challenges from the verifier. In particular, after receiving trace
polynomial commitment from the prover, the verifier selects α0, α1, α2 ∈ F and sends to the prover.
Then, the prover puts the composition polynomial as:

CP (x) = α0 ∗ p0(x) + α1 ∗ p1(x) + α2 ∗ p2(x)

Prover also commits this polynomial by evaluating on the evaluation domain and building a Merkle tree.

3.5 FRI

In general, our goal is to verify that the committed polynomial CP (x) satisfies all our constrains, by
checking it’s evaluation at a random point from the evaluation domain that the verifier selects. Anyway,
we can face the problem when the malicious prover constructs a lager polynomial that accepts lots of
possible roots from our field (even 261 field is still insecure for just checking the evaluation at one point).
That is why we have to make sure that committed polynomial degree lies in acceptable range (the upper
bound depends on the trace size).

The final stage of STARK protocol is a Fast Reed-Solomon IOP of Proximity (FRI). FRI is a
protocol between a prover and a verifier, which establishes that a given evaluation belongs to a polynomial
of low-degree – low means no more than ρ times less than the length of the evaluation domain size.

The key idea of FRI protocol is to move from a polynomial of degree n to a polynomial of degree n/2
until we get a constant value. Let’s consider the polynomial g0(x) of degree n = 2t and the evaluation
domain E0 = E. We suppose to group the odd and the even coefficients of g0 together into the two

3

separate polynomials:

ge0(x
2) =

n/2∑
i=0

(a2i ∗ x2i)

go0(x
2) =

n/2∑
i=0

(a2i+1 ∗ x2i)

Then, we define the next-layer of FRI polynomial as g1(x
2) = ge0(x

2)+βgo0(x
2), where β is a challenge

received from verifier. Next, we commit the g1(x
2) using a next-layer evaluation domain E1 and continue

to repeat the described operations until gi(x
2i) becomes constant.

While we use E0 = {w ∗ hi | i ∈ [0; 8192)} we define the next-layer domain as E1 = {(w ∗ hi)
2 | i ∈

[0; 4096)}. This allows us to express the g1(x
2) using only g0(x) as follows:

ge0(x
2) =

g0(x) + g0(−x)

2

go0(x
2) =

g0(x)− g0(−x)

2x

g1(x
2) = ge0(x

2) + βgo0(x
2)

It’s important to note that −x must also lie in E for every x ∈ E to achieve that gi(−x) can be
committed together with gi(−x). This works because of our choice of a multiplicative coset of size 2k for
integer k as our evaluation domain. The proof of this statement (see – Appendix) can be also applied to
each next-layer domain Ei.

3.6 Protocol definition

Finally, to verify all computations prover and verifier perform the following algorithm:

Protocol 1 Zero-Knowledge Scalable Transparent Argument of Knowledge

Input:

• Private: a1 = 3141592 – secret element of Fibonacci square sequence

• Public: a0 = 1 and a1022 = 2338775057 – fixed elements of Fibonacci square sequence, F – field to
work with

Protocol:

The prover interpolates f(x) and submits it’s commitment to the verifier.

The verifier selects random α0, α1, α2 ∈ F and sends to the prover.

The prover builds the composition polynomial CP (x) and submits it’s commitment to the verifier.

The verifier selects random i ∈ [0; 8192− 16), puts c = w ∗ hi and sends it to the prover.

The prover responds with the f(c), f(gc), f(g2c), CP (c), CP (−c) and corresponding Merkle proofs
to them. Note, that to claim gx where x = w ∗ hi ∈ E from evaluation domain E prover uses power
shifting i+ 8 and i+ 16 to claim g2x (see – Appendix).

The verifier checks Merkle proofs and the evaluation of CP (c) by evaluating the constraints
polynomials p0(c), p1(c), p2(c).

The prover and the verifier go through the FRI protocol for g0(x) = CP (x) where the prover
commits to the layer-i polynomial gi(x), the verifier selects a challenge β and queries from the prover
gi(c), gi(−c) to compute gi+1(c) until gi(x), i ∈ [1; 12) becomes constant.

4

The range i ∈ [1; 12) is referred to the maximal degree of our composition polynomial CP (x) – in
our example degCP (x) ≤ 11.

4 Conclusion

In conclusion, the soundness of the ZK-STARK protocol follows from the impossibility to commit any
possible evaluation of the forgery CP (x) over evaluation domain E and simultaneously prove that CP (x)
is a low-degree polynomial by the FRI protocol. Since the size of E is ρ times bigger then the maximum
allowed polynomial degree (that directly depends on the size of the trace), the attacker either can’t
construct such a polynomial or can’t construct a low-degree polynomial, so a valid low-degree composite
polynomial can only be obtained using a valid trace.

References

[But17a] Vitalik Buterin. STARKs, Part 3: Into the Weeds. 2017. url: https://vitalik.eth.limo/
general/2018/07/21/starks_part_3.html.

[But17b] Vitalik Buterin. STARKs, Part I: Proofs with Polynomials. 2017. url: https://vitalik.
eth.limo/general/2017/11/09/starks_part_1.html.

[But17c] Vitalik Buterin. STARKs, Part II: Thank Goodness It’s FRI-day. 2017. url: https : / /

vitalik.eth.limo/general/2017/11/22/starks_part_2.html.

[But19] Vitalik Buterin. Fast Fourier Transforms. 2019. url: https://vitalik.eth.limo/general/
2019/05/12/fft.html.

[Tea23] StarkWare Team. ethSTARK Documentation. 2023. url: https://eprint.iacr.org/2021/
582.pdf.

[But24] Vitalik Buterin. Exploring circle STARKs. 2024. url: https://vitalik.eth.limo/general/
2024/07/23/circlestarks.html.

A Proof of existence of additive inverse element in E

In general, this proof works for any field of order N where we can select a multiplicative subgroup of
order 2k. In our example N = 3 ∗ 230 + 1 and k = 13.

Any element x ∈ E is equal to w ∗ hi = w ∗ wi·3·217 by construction. Without losing generality, we

can move to x = hi for simplicity. Then, x = hi = w3·217·i and −x = hj = w3·217·j , where j = i + |E|
2

mod |E| (we will show why it works below). Let’s also assume for simplicity that i < j, then:

x+ (−x) ≡ w3·217·i(1 + w3·217· |E|
2) ≡ 0 mod N

|E|
2

= 4096 = 212

1 + w3·217·212 ≡ 0 mod N

w3·229 ≡ N − 1 mod N

w3·230 ≡ (N − 1)2 mod N

1 ≡ N2 − 2N + 1 mod N

1 ≡ 1 mod N

The equation w3·230 ≡ 1 mod N is obtained from the order property of the primitive element w in the
multiplicative group F×.

5

https://vitalik.eth.limo/general/2018/07/21/starks_part_3.html
https://vitalik.eth.limo/general/2018/07/21/starks_part_3.html
https://vitalik.eth.limo/general/2017/11/09/starks_part_1.html
https://vitalik.eth.limo/general/2017/11/09/starks_part_1.html
https://vitalik.eth.limo/general/2017/11/22/starks_part_2.html
https://vitalik.eth.limo/general/2017/11/22/starks_part_2.html
https://vitalik.eth.limo/general/2019/05/12/fft.html
https://vitalik.eth.limo/general/2019/05/12/fft.html
https://eprint.iacr.org/2021/582.pdf
https://eprint.iacr.org/2021/582.pdf
https://vitalik.eth.limo/general/2024/07/23/circlestarks.html
https://vitalik.eth.limo/general/2024/07/23/circlestarks.html

B Proof of shifted element index in E

Any element x ∈ E is equal to w ∗ hi = w ∗ wi·3·217 by construction. Then, while g = w3·220 to claim gx
and g2x from E we take w ∗ hi+8 and w ∗ hi+16:

gx = w3·220 ∗ w ∗ wi·3·217 = w ∗ w3·217(i+23) = w ∗ hi+8

g2x = w3·221 ∗ w ∗ wi·3·217 = w ∗ w3·217(i+24) = w ∗ hi+16

This approach requires i be less then |E| − 16, so the verifier selects i from [0; 8192− 16) range.

6

	Introduction
	Related work

	Preliminaries
	Merkle trees

	STARK protocol
	Trace polynomial
	Polynomial commitment
	Constraints
	Composition polynomial
	FRI
	Protocol definition

	Conclusion
	Proof of existence of additive inverse element in E
	Proof of shifted element index in E

