
ar
X

iv
:1

90
6.

07
22

1v
1

 [
cs

.C
R

]
 1

7
Ju

n
20

19

Why and How zk-SNARK Works: Definitive Explanation

Maksym Petkus

maksym@petkus.info

Abstract

Despite the existence of multiple great resources on zk-SNARK construction, from orig-

inal papers1 to explainers2, due to the sheer number of moving parts the subject remains

a black box for many. While some pieces of the puzzle are given one can not see the full

picture without the missing ones.

Hence the focus of this work is to shed light onto the topic with a straightforward and

clean approach based on examples and answering many whys along the way so that more

individuals can appreciate the state of the art technology, its innovators and ultimately the

beauty of math.

Paper’s contribution is a simplistic exposition with a sufficient and gradually increasing

level of complexity, necessary to understand zk-SNARK without any prerequisite knowledge

of the subject, cryptography or advanced math. The primary goal is not only to explain

how it works but why it works and how it came to be this way.

Keywords: zero-knowledge proof, SNARK, privacy, verifiable computation.

1Bit+11; Par+13.
2Rei16; But16; But17; Gab17.

1

http://arxiv.org/abs/1906.07221v1

Contents

0 Preface 4

1 Introduction 4

2 The Medium of a Proof 5

3 Non-Interactive Zero-Knowledge of a Polynomial 8

3.1 Proving Knowledge of a Polynomial . 8

3.2 Factorization . 8

3.3 Obscure Evaluation . 11

3.3.1 Homomorphic Encryption . 11

3.3.2 Modular Arithmetic . 12

3.3.3 Strong Homomorphic Encryption . 14

3.3.4 Encrypted Polynomial . 14

3.4 Restricting a Polynomial . 16

3.5 Zero-Knowledge . 18

3.6 Non-Interactivity . 19

3.6.1 Multiplication of Encrypted Values . 20

3.6.2 Trusted Party Setup . 21

3.6.3 Trusting One out of Many . 22

3.7 Succinct Non-Interactive Argument of Knowledge of Polynomial 24

3.7.1 Conclusions . 24

4 General-Purpose Zero-Knowledge Proofs 25

4.1 Computation . 25

4.2 Single Operation . 25

4.2.1 Arithmetic Properties of Polynomials . 26

4.3 Enforcing Operation . 27

4.4 Proof of Operation . 29

4.5 Multiple Operations . 30

4.5.1 Polynomial Interpolation . 32

4.5.2 Multi-Operation Polynomials . 33

4.6 Variable Polynomials . 35

4.6.1 Single-Variable Operand Polynomial . 36

4.6.2 Multi-Variable Operand Polynomial . 38

4.7 Construction Properties . 41

4.7.1 Constant Coefficients . 41

4.7.2 Addition for Free . 42

4.7.3 Addition, Subtraction and Division . 43

4.8 Example Computation . 44

4.9 Verifiable Computation Protocol . 48

4.9.1 Non-Interchangeability of Operands and Output 49

2

4.9.2 Variable Consistency Across Operands . 50

4.9.3 Non-malleability of Variable and Variable Consistency Polynomials 52

4.9.4 Optimization of Variable Values Consistency Check 54

4.10 Constraints . 55

4.11 Public Inputs and One . 57

4.12 Zero-Knowledge Proof of Computation . 58

4.13 zk-SNARK Protocol . 61

5 Conclusions 62

6 References 64

3

0 Preface

While initially planned as short, the work now spans several dozens of pages, nevertheless it

requires very little pre-requisite knowledge, and one can freely skip familiar parts.

Do not worry if you are not acquainted with some of the used math symbols, there will be just

a few, and they will be introduced gradually, one at a time.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) is the truly in-

genious method of proving that something is true without revealing any other information,

however, why it is useful in the first place?

Zero-knowledge proofs are advantageous in a myriad of application, including:

• Proving statement on private data:

– Person A has more than X in his bank account

– In the last year, a bank did not transact with an entity Y

– Matching DNA without revealing full DNA

– One has a credit score higher than Z

• Anonymous authorization:

– Proving that requester R has right to access web-site’s restricted area without revea-

ling its identity (e.g., login, password)

– Prove that one is from the list of allowed countries/states without revealing from

which one exactly

– Prove that one owns a monthly pass to a subway/metro without revealing card’s id

• Anonymous payments:

– Payment with full detachment from any kind of identity3

– Paying taxes without revealing one’s earnings

• Outsourcing computation:

– Outsource an expensive computation and validate that the result is correct without

redoing the execution; it opens up a category of trustless computing

– Changing a blockchain model from everyone computes the same to one party com-

putes and everyone verifies

3Ben+14.

4

As great as it sounds on the surface the underlying method is a “marvel” of mathematics

and cryptography and is being researched for the 4th decade since its introduction in 1985 in

the principal work “The Knowledge Complexity of Interactive Proof-systems” [GMR85] with

subsequent introduction of the non-interactive proofs [BFM88] which are especially essential in

the context of blockchains.

In any zero-knowledge proof system, there is a prover who wants to convince a verifier that

some statement is true without revealing any other information, e.g., verifier learns that the

prover has more than X in his bank account but nothing else (i.e., the actual amount is not

disclosed). A protocol should satisfy three properties:

• Completeness — if the statement is true then a prover can convince a verifier

• Soundness — a cheating prover can not convince a verifier of a false statement

• Zero-knowledge — the interaction only reveals if a statement is true and nothing else

The zk-SNARK term itself was introduced in [Bit+11], building on [Gro10] with following

Pinocchio protocol [Gen+12; Par+13] making it applicable for general computing.

2 The Medium of a Proof

Let us start simple and try to prove something without worrying about the zero-knowledge,

non-interactivity, its form, and applicability.

Imagine that we have an array of bits of length 10, and we want to prove to a verifier (e.g.,

program) that all those bits are set to 1, i.e., we know an array such that every element equals

to 1.

b = [? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ?]

Hello Verifier can only check (i.e., read) one element at a time. In order to verify the statement

one can proceed by reading elements in some arbitrary order and checking if it is truly equal

to 1 and if so the confidence in that statement after the first check is 1
10 = 10%, or statement

is invalidated altogether if the bit equals to 0. A verifier must proceed to the next round until

he reaches sufficient confidence. In some cases, one may trust a prover and require only 50%

confidence which means that 5 checks must be executed, in other cases where 95% confidence

is needed all cells must be checked. It is clear that the downside of such a proving protocol

is that one must do the number of checks proportionate to the number of elements, which is

non-practical if we consider arrays of millions of elements.

Let us consider polynomials, which can be visualized as a curve on a graph, shaped by a

mathematical equation:

5

1 2 3 4 x

y

The above curve corresponds to the polynomial: f(x) = x3 − 6x2 + 11x − 6. The degree of a

polynomial is determined by its greatest exponent of x, which in this case is 3.

Polynomials have an advantageous property, namely, if we have two non-equal polynomials of

degree at most d, they can intersect at no more than d points. For example, let us modify the

original polynomial slightly x3 − 6x2 + 10x− 5 and visualize it in green:

1 2 3 4 x

y

Such a tiny change produces a dramatically different result. In fact, it is impossible to find two

non-equal polynomials, which share a consecutive chunk of a curve4.

This property flows from the method of finding shared points. If we want to find intersections

of two polynomials, we need to equate them. For example, to find where a polynomial crosses

an x-axis (i.e., f(x) = 0), we equate x3 − 6x2 + 11x− 6 = 0, and solutions to such an equation

will be those shared points: x = 1, x = 2 and x = 3, also you can clearly see that this is true

on the previous graph, where the blue curve crosses the x-axis line.

Likewise, we can equate our original and modified version of polynomials to find their intersec-

tions.

x3 − 6x2 + 11x− 6 = x3 − 6x2 + 10x− 5

x− 1 = 0

4Excluding a single point chunk case

6

The resulting polynomial is of degree 1 with an obvious solution x = 1. Hence only one

intersection:

1 2 3 4

(1,0)

x

y

The result of any such equation for arbitrary degree d polynomials is always another polynomial

of degree at most d, since there is no multiplication to produce higher degrees. Example:

5x3 + 7x2 − x + 2 = 3x3 − x2 + 2x − 5, which simplifies to 2x3 + 8x2 − 3x + 7 = 0. And

the Fundamental Theorem of Algebra tells us that a degree d polynomial can have at most d

solutions5, and therefore at most d shared points.

Hence we can conclude that evaluation6 of any polynomial at an arbitrary point is akin to the

representation of its unique identity. Let us evaluate our example polynomials at x = 10.

x3 − 6x2 + 11x− 6 = 504

x3 − 6x2 + 10x− 5 = 495

In fact out of all choices of x to evaluate, only at most 3 choices will have equal evaluations in

those polynomials and all others will differ.

That is why if a prover claims to know some polynomial (no matter how large its degree is)

that the verifier also knows, they can follow a simple protocol to verify the statement:

• Verifier chooses a random value for x and evaluates his polynomial locally

• Verifier gives x to the prover and asks to evaluate the polynomial in question

• Prover evaluates his polynomial at x and gives the result to the verifier

• Verifier checks if the local result is equal to the prover’s result, and if so then the statement

is proven with a high confidence

If we, for example, consider an integer range of x from 1 to 1077, the number of points where

evaluations are different is 1077 − d. Henceforth the probability that x accidentally “hits” any

of the d shared points is equal to
d

1077
, which is considered negligible.

5More on this in section 3.2
6More on polynomial evaluation: [Pik13]

7

Note: the new protocol requires only one round and gives overwhelming confidence (almost 100%

assuming d is sufficiently smaller than the upper bound of the range) in the statement compared

to the inefficient bit check protocol.

That is why polynomials are at the very core of zk-SNARK, although it is likely that other

proof mediums exist as well.

3 Non-Interactive Zero-Knowledge of a Polynomial

3.1 Proving Knowledge of a Polynomial

We start with a problem of proving the knowledge of a polynomial and make our way to a

generic approach. We will discover many other properties of polynomials along the way.

The discussion so far has focused on a weak notion of a proof, where parties have to trust each

other because there are no measures yet to enforce the rules of the protocol. For example,

the prover is not required to know a polynomial, and he can use any other means available to

him to come up with a correct result. Moreover, if the amplitude of the verifier’s polynomial

evaluations is not large, let us say 10, the verifier can guess a number, and there is a non-

negligible probability that it will be accepted. We have to address such weakness of the protocol,

but first what does it means to know a polynomial? A polynomial can be expressed in the form

(where n is the degree of the polynomial):

cnx
n + ...+ c1x

1 + c0x
0

If one stated that he or she knows a polynomial of degree 1 (i.e., c1x
1+c0), that means that what

one really knows is the coefficients c0, c1. Moreover, coefficients can have any value, including

0.

Let us say that the prover claims to know a degree 3 polynomial, such that x = 1 and x = 2

are two of all possible solutions. One of such valid polynomials is x3− 3x2 +2x = 0. For x = 1:

1− 3 + 2 = 0. For x = 2: 8− 12 + 4 = 0.

Let us first look more closely at the anatomy of the solution.

3.2 Factorization

The Fundamental Theorem of Algebra states that any polynomial can be factored into linear po-

lynomials (i.e., a degree 1 polynomials representing a line), as long it is solvable. Consequently,

we can represent any valid polynomial as a product of its factors:

(x− a0)(x− a1)...(x− an) = 0

Also, if any of these factors is zero then the whole equation is zero, henceforth all the a-s are

the only solutions.

In fact, our example can be factored into the following polynomial:

x3 − 3x2 + 2x = (x− 0)(x − 1)(x− 2)

8

And the solutions are (values of x): 0, 1, 2, you can check this easily on either form of the

polynomial, but the factorized form has all the solutions (also called roots) on the surface.

Getting back to the prover’s claim that he knows a polynomial of degree 3 with the roots 1 and

2, this means that his polynomial has the form:

(x− 1)(x− 2) · . . .

In other words (x − 1) and (x − 2) are the cofactors of the polynomial in question. Hence if

the prover wants to prove that indeed his polynomial has those roots without disclosing the

polynomial itself, he needs to prove that his polynomial p(x) is the multiplication of those

cofactors t(x) = (x − 1)(x − 2), called target polynomial, and some arbitrary polynomial h(x)

(equals to x− 0 in our example), i.e.:

p(x) = t(x) · h(x)

In other words, there exists some polynomial h(x) which makes t(x) equal to p(x), therefore

p(x) contains t(x), consequently p(x) has all roots of t(x), the very thing to be proven.

A natural way to find h(x) is through the division h(x) = p(x)
t(x) . If the prover cannot find

such h(x) that means that p(x) does not have the necessary cofactors t(x), in which case the

polynomials division will have a remainder.

In our example if we divide p(x) = x3−3x2+2x by the t(x) = (x−1)(x−2) = x2−3x+2:

x

x2 − 3x+ 2
)

x3 − 3x2 + 2x

− x3 + 3x2 − 2x

0

Note: the denominator is to the left, the result is to the top right, and the remainder is to the

bottom7.

We have got the result h(x) = x without remainder.

Note: for simplicity, onwards we will use polynomial’s letter variable to denote its evaluation,

e.g., p = p(r)

Using our polynomial identity check protocol we can compare polynomials p(x) and t(x)·h(x):

• Verifier samples a random value r, calculates t = t(r) (i.e., evaluates) and gives r to the

prover

• Prover calculates h(x) = p(x)
t(x) and evaluates p(r) and h(r); the resulting values p, h are

provided to the verifier

• Verifier then checks that p = t · h, if so those polynomials are equal, meaning that p(x)

has t(x) as a cofactor.

7Polynomial division explanation with examples is available at [Pik14]

9

To put this into practice, let us execute this protocol for our example:

p(x) = x3 − 3x2 + 2x

t(x) = (x− 1)(x− 2)

• Verifier samples a random value 23, calculates t = t(23) = (23 − 1)(23 − 2) = 462 and

gives 23 to the prover

• Prover calculates h(x) = p(x)
t(x) = x, evaluates p = p(23) = 10626 and h = h(23) = 23 and

provides p, h to the verifier

• Verifier then checks that p = t · h: 10626 = 462 · 23, which is true, and therefore the

statement is proven

On the contrary, if the prover uses a different p′(x) which does not have the necessary cofactors,

for example p′(x) = 2x3 − 3x2 + 2x, then:

h(x) = 2x+ 3

x2 − 3x+ 2
)

2x3 − 3x2 + 2x

− 2x3 + 6x2 − 4x

3x2 − 2x

− 3x2 + 9x− 6

7x− 6

We will get 2x+3 with the remainder 7x−6, i.e.: p(x) = t(x)×(2x+3)+7x−6. This means that

the prover will have to divide the remainder by the t(r) in order to evaluate h(x) = 2x+3+ 7x−6
t(x) .

Therefore because of the random selection of x by the verifier, there is a low8 probability that the

evaluation of the remainder 7x− 6 will be evenly divisible by the evaluation of t(x), henceforth

if verifier will additionally check that p and h must be integers, such proofs will be rejected.

However, the check requires the polynomial coefficients to be integers too, creating a significant

limitation to the protocol.

That is the reason to introduce cryptographic primitives which make such division impossible,

even if the raw evaluations happen to be divisible.

Note: although the author’s chief objective is simplicity, including the set of math symbols in

use, it would be detrimental for further sections to omit the ubiquitous symbol prime: ′ . Its

essential purpose is to signify some transformation or derivation of the original variable or

function, e.g., if we want to multiply v by 2 and assign it to a separate variable, we could use

prime: v′ = 2 · v.

Remark 3.1 Now we can check a polynomial for specific properties without learning the polyno-

mial itself, so this already gives us some form of zero-knowledge and succinctness. Nonetheless,

there are multiple issues with this construction:

8But still non-negligible

10

• Prover may not know the claimed polynomial p(x) at all. He can calculate evaluation

t = t(r), select a random number h and set p = t · h, which will be accepted by the verifier

as valid, since equation holds.

• Because prover knows the random point x = r, he can construct any polynomial which has

one shared point at r with t(r) · h(r).

• In the original statement, prover claims to know a polynomial of a particular degree, in

the current protocol there is no enforcement of degree. Hence prover can cheat by using a

polynomial of higher degree which also satisfies the cofactors check.

We will address all of the issues in the following sections.

3.3 Obscure Evaluation

Two first issues of remark 3.1 are possible because values are presented at raw, prover knows r

and t(r). It would be ideal if those values would be given as a black box, so one cannot temper

with the protocol, but still able to compute operations on those obscure values. Something

similar to the hash function, such that when computed it is hard to go back to the original

input.

3.3.1 Homomorphic Encryption

That is exactly what homomorphic encryption is designed for. Namely, it allows to encrypt

a value and be able to apply arithmetic operations on such encryption. There are multiple

ways to achieve homomorphic properties of encryption, and we will briefly introduce a simple

one.

The general idea is that we choose a base9 natural number g (say 5) and to encrypt a value

we exponentiate g to the power of that value. For example, if we want to encrypt the number

3:

53 = 125

Where 125 is the encryption of 3. If we want to multiply this encrypted number by 2, we raise

it to the exponent of 2:

1252 = 15625 =
(
53
)2

= 52×3 = 56

We were able to multiply an unknown value by 2 and keep it encrypted. We can also add two

encrypted values through multiplication, for example, 3 + 2:

53 · 52 = 53+2 = 55 = 3125

Similarly, we can subtract encrypted numbers through division, for example, 5− 3:

55

53
= 55 · 5−3 = 55−3 = 52 = 25

9There are certain properties that base number needs to have

11

However, since the base 5 is public, it is quite easy to go back to the secret number, dividing

encrypted by 5 until the result is 1. The number of steps is the secret number.

3.3.2 Modular Arithmetic

That is where the modular arithmetic comes into play. The idea of modular arithmetic is

following: instead of having an infinite set of numbers we declare that we select only first n

natural numbers, i.e., 0, 1, . . . , n − 1, to work with, and if any given integer falls out of this

range, we “wrap” it around. For example, let us choose six first numbers. To illustrate this,

consider a circle with six ticks of equal units; this is our range10.

0

1

2

3

4

5

Now let us see where the number eight will land. As an analogy, we can think of it as a rope,

the length of which is eight units:

0 1 2 3 4 5 6 7 8

If we attach the rope to the beginning of the circle

0

1

2

3

4

5

1 2 3 4 5 6 7 8

and start wrapping the rope around it, after one rotation we still have a portion of the rope

left:

0

1

2

3

4

5

7 8

Therefore if we continue the process, the rope will end right at the tick #2.

10Usually referred to as finite field

12

0

1

2

3

4

5

8

It is the result of the modulo operation. No matter how long the rope is it will always stop at

one of the circle’s ticks. Therefore the modulo operation will keep it in certain bounds (in this

case from 0 to 5). The 15-units rope will stop at 3, i.e., 6 + 6 + 3 (two full circles with 3-units

leftover). The negative numbers work the same way, and the only difference is that we wrap it

in the opposite direction, for −8 the result will be 4.

Moreover, we can perform arithmetic operations, and the result will always be in the scope of

n numbers. We will use the notation “mod n” for now on to denote the range of numbers. For

example:

3× 5 = 3 (mod 6)

5 + 2 = 1 (mod 6)

Furthermore, the most important property is that the order of operations does not matter,

e.g., we can perform all operations first and then apply modulo or apply modulo after every

operation. For example (2× 4− 1)× 3 = 3 (mod 6) is equivalent to:

2× 4 = 2 (mod 6)

2− 1 = 1 (mod 6)

1× 3 = 3 (mod 6)

So why on earth is that helpful? It turns out that if we use modulo arithmetic, having a

result of operation it is non-trivial to go back to the original numbers because many different

combinations will have the same result:

5× 4 = 2 (mod 6)

4× 2 = 2 (mod 6)

2× 1 = 2 (mod 6)

. . .

Without the modular arithmetic, the size of the result gives a clue to its solution. This piece

of information is hidden otherwise, while common arithmetic properties are preserved.

13

3.3.3 Strong Homomorphic Encryption

If we go back to the homomorphic encryption and use modular arithmetic, for example with

modulo 7, we will get:

51 = 5 (mod 7)

52 = 4 (mod 7)

53 = 6 (mod 7)

. . .

And different exponents will have the same result:

55 = 3 (mod 7)

511 = 3 (mod 7)

517 = 3 (mod 7)

. . .

This is where it gets hard to find the exponent. In fact, if modulo is sufficiently large, it

becomes infeasible to do so, and a good portion of the modern-day cryptography is based on

the “hardness” of this problem.

All the homomorphic properties of the scheme are preserved in the modular realm:

encryption : 53 = 6 (mod 7)

multiplication : 62 = (53)
2
= 56 = 1 (mod 7)

addition : 53 · 52 = 55 = 3 (mod 7)

Note: modular division is a bit more complicated and out of the scope.

Let us explicitly state the encryption function: E(v) = gv (mod n), where v is the value we

want to encrypt.

Remark 3.2 There are limitations to this homomorphic encryption scheme while we can mul-

tiply an encrypted value by an unencrypted value, we cannot multiply (and divide) two encrypted

values, as well as we cannot exponentiate an encrypted value. While unfortunate from the first

impression, these properties will turn out to be the cornerstone of zk-SNARK. The limitations

are addressed in section 3.6.1

3.3.4 Encrypted Polynomial

Armed with such tools, we can now evaluate a polynomial with an encrypted random value of

x and modify the zero-knowledge protocol accordingly.

Let us see how we can evaluate a polynomial p(x) = x3 − 3x2 + 2x. As we have established

previously to know a polynomial is to know its coefficients, in this case those are: 1, -3, 2.

Because homomorphic encryption does not allows to exponentiate an encrypted value, we’ve

must been given encrypted values of powers of x from 1 to 3: E(x), E(x2), E(x3), so that we

14

can evaluate the encrypted polynomial as follows:

E
(
x3

)1
·E

(
x2

)−3
·E (x)2 =

(

gx
3
)1

·
(

gx
2
)−3

·
(

gx
)2

=

g1x
3
· g−3x2

· g2x =

gx
3−3x2+2x

As the result of such operations, we have an encrypted evaluation of our polynomial at some

unknown to us x. This is quite a powerful mechanism, and because of the homomorphic

property, the encrypted evaluations of the same polynomials are always the same in encrypted

space.

We can now update the previous version of the protocol, for a polynomial of degree d:

• Verifier

– samples a random value s, i.e., secret

– calculates encryptions of s for all powers i in 0, 1, ..., d, i.e.: E(si) = gs
i

– evaluates unencrypted target polynomial with s: t(s)

– encrypted powers of s are provided to the prover: E(s0), E(s1), ..., E(sd)

• Prover

– calculates polynomial h(x) = p(x)
t(x)

– using encrypted powers gs
0
, gs

1
, . . . , gs

d
and coefficients c0, c1, . . . , cn evaluates

E (p(s)) = gp(s) =
(

gs
d
)cd

· · ·
(

gs
1
)c1

·
(

gs
0
)c0

and similarly E (h(s)) = gh(s)

– the resulting gp and gh are provided to the verifier

• Verifier

– The last step for the verifier is to checks that p = t(s) · h in encrypted space:

gp =
(

gh
)t(s)

⇒ gp = gt(s)·h

Note: because the prover does not know anything about s, it makes it hard to come up with

non-legitimate but still matching evaluations.

While in such protocol the prover’s agility is limited he still can use any other means to forge a

proof without actually using the provided encryptions of powers of s, for example, if the prover

claims to have a satisfactory polynomial using only 2 powers s3 and s1, that is not possible to

verify in the current protocol.

15

3.4 Restricting a Polynomial

The knowledge of a polynomial is the knowledge of its coefficients c0, c1, . . . , ci and the way

we “assign” those coefficients in the protocol is through exponentiation of the corresponding

encrypted powers of the secret value s (i.e., E
(
si
)ci = gci·s

i
). We do already restrict a prover in

the selection of encrypted powers of s, but such restriction is not enforced, e.g., one could use

any possible means to find some arbitrary values zp and zh which satisfy equation zp = (zh)
t(s)

and provide them to the verifier instead of gp and gh. For example, for some random r zh = gr

and zp =
(
gt(s)

)r
, where gt(s) can be computed from the provided encrypted powers of s. That is

why verifier needs the proof that only supplied encryptions of powers of s were used to calculate

gp and gh and nothing else.

Let us consider an elementary example of a degree 1 polynomial with one variable and one

coefficient f(x) = c ·x and correspondingly the encryption of the s is provided E(s) = gs. What

we are looking for is to make sure that only encryption of s, i.e., gs, was homomorphically

“multiplied” by some arbitrary coefficient c and nothing else. So the result must always be of

the form (gs)c for some arbitrary c.

A way to do this is to require to perform the same operation on another shifted encrypted value

alongside with the original one, acting as an arithmetic analog of “checksum”, ensuring that

the result is exponentiation of the original value.

This is achieved through the Knowledge-of-Exponent Assumption (or KEA), introduced in

[Dam91], more precisely:

• Alice has a value a, that she wants Bob to exponentiate to any power11, the single

requirement is that only this a can be exponentiated and nothing else, to ensure this

she:

– chooses a random α

– calculates a′ = aα (mod n)

– provides the tuple (a, a′) to Bob and asks to perform same arbitrary exponentiation

of each value and reply with the resulting tuple (b, b′) where the exponent “α-shift”

remains the same, i.e., bα = b′ (mod n)

• because Bob cannot extract α from the tuple (a, a′) other then through a brute-force12

which is infeasible, it is conjectured that the only way Bob can produce a valid response

is through the procedure:

– chose some value c

– calculate b = (a)c (mod n) and b′ = (a′)c (mod n)

– reply with (b, b′)

11Where a is a generator of a finite field group used
12The proof is provided in the original paper

16

• having the response and α, Alice checks the equality:

(b)α = b′

(ac)α = (a′)
c

ac·α = (aα)c

• conclusions:

– Bob has applied the same exponent (i.e., c) to both values of the tuple

– Bob could only use the original Alice’s tuple to maintain the α relationship

– Bob knows the applied exponent c, because the only way to produce valid (b, b′) is

to use the same exponent

– Alice has not learned c for the same reason Bob cannot learn α13

Ultimately such protocol provides a proof to Alice that Bob indeed exponentiated a by some

value known to him, and he could not do any other operation, e.g., multiplication, addition,

since this would erase the α-shift relationship.

In the homomorphic encryption context, exponentiation is the multiplication of the encrypted

value. We can apply the same construction in the case with the simple one-coefficient polynomial

f(x) = c · x:

• Verifier chooses random s, α and provides evaluation for x = s for power 1 and its “shift”:

(gs, gα·s)

• Prover applies the coefficient c: ((gs)c , (gα·s)c) = (gc·s, gα·c·s)

• Verifier checks: (gc·s)α = gα·c·s

Such construction restricts the prover to use only the encrypted s provided, therefore prover

could have assigned coefficient c only to the polynomial provided by the verifier. We can now

scale such one-term polynomial14 approach to a multi-term polynomial because the coefficient

assignment of each term is calculated separately and then homomorphically “added” together

(this approach was introduced by Jens Groth in [Gro10]). So if the prover is given encrypted

exponentiations of s alongside with their shifted values he can evaluate original and shifted

polynomial, where the same check must hold. In particular, for a degree d polynomial:

• Verifier provides encrypted powers gs
0
, gs

1
, . . . , gs

d
and their shifts gαs

0
, gαs

1
, . . . , gαs

d

• Prover:

– evaluates encrypted polynomial with provided powers of s:

gp(s) =
(

gs
0
)c0

·
(

gs
1
)c1

· . . . ·
(

gs
d
)cd

= gc0s
0+c1s

1+...+cds
d

13Although the c is encrypted its range of possible values might not be sufficient to preserve zero-knowledge

property which will be addressed in the section 3.5.
14Monomial

17

– evaluates encrypted “shifted” polynomial with the corresponding α-shifts of the powers

of s:

gαp(s) =
(

gαs
0
)c0

·
(

gαs
1
)c1

· . . . ·
(

gαs
d
)cd

= gc0αs
0+c1αs

1+...+cdαs
d
= gα(c0s

0+c1s
1+...+cds

d)

– provides the result as gp, gp
′

to the verifier

• Verifier checks: (gp)α = gp
′

For our previous example polynomial p(x) = x3 − 3x2 + 2x this would be:

• Verifier provides E(s3), E(s2), E(s) and their shifts E(αs3), E(αs2), E(αs)

• Prover evaluates:

gp = gp(s) =
(

gs
3
)1

·
(

gs
2
)−3

·
(

gs
)2

= gs
3
· g−3s2 · g2s = gs

3−3s2+2s

gp
′

= gαp(s) =
(

gαs
3
)1

·
(

gαs
2
)−3

·
(

gαs
)2

= gαs
3
· g−3αs2 · g2αs = gα(s

3−3s2+2s)

• Verifier checks (gp)α = gp
′

:
(

gs
3−3s2+2s

)α

= gα(s
3−3s2+2s)

gα(s
3−3s2+2s) = gα(s

3−3s2+2s)

Now we can be sure that the prover did not use anything else other than the provided by verifier

polynomial, since there is no other way to preserve the α-shift. Also if a verifier would want

to ensure exclusion of some power(s) of s in a prover’s polynomial, e.g., j, he will not provide

encryption gs
j
and its shift gαs

j
.

Compared to what we have started with, we now have a robust protocol. However there is

still a significant drawback to the zero-knowledge property, regardless of encryption: while

theoretically polynomial coefficients ci can have a vast range of values, in reality, it might be

quite limited (6 in the previous example), which means that the verifier could brute-force limited

range of coefficients combinations until the result is equal to the prover’s answer. For instance

if we consider the range of 100 values for each coefficient, the degree 2 polynomial would total

to 1 million of distinct combinations, which considering brute-force would require less than 1

million iterations. Moreover, the secure protocol should be secure even in cases where there is

only one coefficient, and its value is 1.

3.5 Zero-Knowledge

Because verifier can extract knowledge about the unknown polynomial p(x) only from the data

sent by the prover, let us consider those provided values (the proof): gp, gp
′

, gh. They participate

in the following checks:

gp =
(

gh
)t(s)

(polynomial p(x) has roots of t(x))

(gp)α = gp
′

(polynomial of a correct form is used)

The question is how do we alter the proof such that the checks still hold, but no knowledge can

be extracted? One answer can be derived from the previous section: we can “shift” those values

by some random number δ (delta), e.g., (gp)δ. Now, in order to extract the knowledge, one

18

first needs to find δ which is considered infeasible. Moreover, such randomization is statistically

indistinguishable from random.

To maintain relationships let us examine the verifier’s checks. One of the prover’s values is on

each side of the equations. Therefore if we “shift” each of them with the same δ the equations

must remain balanced.

Concretely, prover samples a random δ and exponentiates his proof values with it
(
gp(s)

)δ
,

(
gh(s)

)δ
,
(
gαp(s)

)δ
and provides to the verifier for verification:

(gp)δ =

((

gh
)δ

)t(s)

(

(gp)δ
)α

=
(

gp
′

)δ

After consolidation we can observe that the check still holds:

gδ·p = gδ·t(s)h

gδ·αp = gδ·p
′

Note: how easily the zero-knowledge is woven into the construction, this is often referred to as

“free” zero-knowledge.

3.6 Non-Interactivity

Till this point, we had an interactive zero-knowledge scheme. Why is that the case? Because

the proof is only valid for the original verifier, nobody else (other verifiers) can trust the same

proof since:

• the verifier could collude with the prover and disclose those secret parameters s, α which

allows to fake the proof, as mentioned in remark 3.1

• the verifier can generate fake proofs himself for the same reason

• verifier have to store α and t(s) until all relevant proofs are verified, which allows an extra

attack surface with possible leakage of secret parameters

Therefore a separate interaction with every verifier is required in order for a statement (know-

ledge of polynomial in this case) to be proven.

While interactive proof system has its use cases, for example when a prover wants to convince

only a dedicated verifier (called designated verifier15) such that the proof cannot be re-used to

prove same statement to others, it is quite inefficient when one needs to convince many parties

simultaneously (e.g., in distributed systems such as blockchain) or permanently. Prover would

be required to stay online at all times and perform the same computation for every verifier.

Hence, we need the secret parameters to be reusable, public, trustworthy and infeasible to

abuse.

15More on designated verifier in [JSI96]

19

Let us first consider how would we secure the secrets (t(s), α) after they are produced. We

can encrypt them the same way verifier encrypts powers of s before sending to the prover.

However as mentioned in the remark 3.2, the homomorphic encryption we use does not support

the multiplication of two encrypted values, which is necessary for both verification checks to

multiply encryptions of t(s) and h as well as p and α. This is where cryptographic pairings fit

in.

3.6.1 Multiplication of Encrypted Values

Cryptographic pairings (bilinear map) is a mathematical construction, denoted as a function

e(g∗, g∗), which given two encrypted inputs (e.g., ga, gb) from one set of numbers allows to map

them deterministically to their multiplied representation in a different output set of numbers,

i.e., e(ga, gb) = e(g, g)ab:

Source set

ga

gb

Output set

e(g, g)ab

.

Because the source and output number sets16 are different the result of the pairing is not usable

as an input for another pairing operation. We can look at the output set (also called “target

set”) as being from a “different universe.” Therefore we cannot multiply the result by another

encrypted value and suggested by the name itself we can only multiply two encrypted values at

a time.

In some sense, it resembles a hash function, which maps all possible input values to an element

in the set of possible output values and it is not trivially reversible.

Note: from first glance, such limitation must only impede a dependent functionality, ironically

in the zk-SNARK case it is a paramount property on which security of the scheme holds, see

remark 3.3.

A rudimentary (and technically incorrect) mathematical analogy for pairing function e(g∗, g∗)

would be to state that there is a way to “swap” each input’s base and exponent, such that base

g is modified in the process of transformation into exponent, e.g., ga → ag. Both “swapped”

inputs are then multiplied together, such that raw a and b values get multiplied under the same

exponent, e.g.:

e(ga, gb) = ag · bg = (ab)g

16Usually referred to as a group.

20

Therefore because the base gets altered during the “swap” using the result (ab)g in another

pairing (e.g., e ((ab)g , gc)) would not produce desired encrypted multiplication abc.

The core properties of pairings can be expressed in the equations:

e(ga, gb) = e(gb, ga) = e(gab, g1) = e(g1, gab) = e(g1, ga)
b
= e(g1, g1)

ab
= . . .

Technically the result of a pairing is an encrypted product of raw values under a different

generator g of the target set, i.e., e(ga, gb) = gab. Therefore it has properties of the homomorphic

encryption, e.g., we can add the encrypted products of multiple pairings together:

e(ga, gb) · e(gc, gd) = gab · gcd = gab+cd = e(g, g)ab+cd

Note: cryptographic pairing is leveraging elliptic curves to achieve these properties, therefore

from now on notation gn will represent a generator point on a curve added to itself n times

instead of a multiplicative group generator which we have used in previous sections.

The survey [DBS04] provides a starting point for exploration of the cryptographic pairings.

3.6.2 Trusted Party Setup

Having cryptographic pairings, we are now ready to set up secure public and reusable parame-

ters. Let us assume that we trust a single honest party to generate secrets s and α. As soon as

α and all necessary powers of s with corresponding α-shifts are encrypted (gα, gs
i
, gαs

i
for i in

0, 1, . . . , d), the raw values must be deleted.

These parameters are usually referred to as common reference string or CRS. After CRS is gene-

rated any prover and any verifier can use it in order to conduct non-interactive zero-knowledge

proof protocol. While non-crucial, the optimized version of CRS will include encrypted evalua-

tion of the target polynomial gt(s).

Moreover CRS is divided into two groups (for i in 0, 1, . . . , d):

• Proving key17: (gs
i
, gαs

i
)

• Verification key: (gt(s), gα)

Being able to multiply encrypted values the verifier can check the polynomials in the last step

of the protocol:

• Having verification key verifier processes received encrypted polynomial evaluations gp, gh, gp
′

from the prover:

– checks that p = t · h in encrypted space:

e
(
gp, g1

)
= e

(
gt, gh

)
which is equivalent to e (g, g)p = e (g, g)t·h

– checks polynomial restriction:

e (gp, gα) = e
(

gp
′

, g
)

17Also called evaluation key

21

3.6.3 Trusting One out of Many

While the trusted setup is efficient, it is not effective since multiple users of CRS will have to

trust that one deleted α and s, since currently there is no way to prove that18. Hence it is

necessary to minimize or eliminate that trust. Otherwise, a dishonest party would be able to

produce fake proofs without being detected.

One way to achieve that is by generating a composite CRS by multiple parties employing

mathematical tools introduced in previous sections, such that neither of those parties knows

the secret. Here is an approach, let us consider three participants Alice, Bob and Carol with

corresponding indices A, B and C, for i in 1, 2, . . . , d:

• Alice samples her random sA and αA and publishes her CRS:
(

gs
i
A , gαA , gαAsi

A

)

• Bob samples his sB and αB and augments Alice’s encrypted CRS through homomorphic

multiplication:
((

gs
i
A

)si
B
, (gαA)αB ,

(

gαAsi
A

)αBsi
B

)

=
(

g(sAsB)i , gαAαB , gαAαB(sAsB)i
)

and publishes the resulting two-party Alice-Bob CRS:
(

gs
i
AB , gαAB , gαAB si

AB

)

• So does Carol with her sC and αC :((

gs
i
AB

)siC
,
(

gαAB

)αC

,
(

gαAB si
AB

)αCsiC
)

=
(

g(sAsBsC)i , gαAαBαC , gαAαBαC(sAsBsC)i
)

and publishes Alice-Bob-Carol CRS:
(

gs
i
ABC , gαABC , gαABC si

ABC

)

As the result of such protocol, we have composite si = siAs
i
Bs

i
C , and α = αAαBαC and no

participant learns secret parameters of other participants unless they are colluding. In fact, in

order to learn s and α, one must collude with every other participant. Therefore even if one

out of all is honest, it will be infeasible to produce fake proofs.

Note: this process can be repeated for as many participants as necessary.

The question one might have is how to verify that participant have been consistent with every

value of CRS, because an adversary can sample multiple different s1, s2, . . . and α1, α2, . . ., and

use those randomly for different powers of s (or provide random numbers as an augmented

common reference string), rendering CRS invalid and unusable.

Luckily, because we can multiply encrypted values using pairings, we are able to perform con-

sistency check, starting with the first parameter and ensuring that every next is derived from

it. Every published CRS by participants can be checked as follows:

• We take power 1 of s as canonical value and check every other power for consistency with

it:

18Proof of ignorance is an area of active research [DK18]

22

e
(

gs
i
, g
)

= e
(

gs
1
, gs

i−1
)∣
∣
∣
i∈{2,...,d}

for example:

– Power 2: e
(

gs
2
, g
)

= e
(

gs
1
, gs

1
)

⇒ e(g, g)s
2

= e(g, g)s
1+1

– Power 3: e
(

gs
3
, g
)

= e
(

gs
1
, gs

2
)

⇒ e(g, g)s
3

= e(g, g)s
1+2

, etc.

• We now check if the α-shift of values in the previous step is correct:

e
(

gs
i
, gα

)

= e
(

gαs
i
, g
)∣
∣
∣
i∈[d]

for example:

– Power 3: e
(

gs
3
, gα

)

= e
(

gαs
3
, g
)

⇒ e(g, g)s
3·α = e(g, g)αs

3

, etc.

where i ∈ {2, . . . , d} is a shortened form of “i is in 2, 3, . . . , d” and [d] is a shortened form

of 1, 2, . . . , d, which is the more convenient notation for the next sections

Notice that while we verify that every participant is consistent with their secret parameters,

the requirement to use previously published CRS is not enforced for every next party (Bob and

Carol in our example). Hence if an adversary is the last in the chain he can ignore the previous

CRS and construct valid parameters from scratch, as if he was the first in the chain, therefore

being the only one who knows secret s and α.

We can address this by additionally requiring every participant except the first one to encrypt

and publish his secret parameters, for example, Bob also publishes:
(

gs
i
B , gαB , gαBsiB

)∣
∣
∣
i∈[d]

This allows to validate that Bob’s CRS is a proper multiple of Alice’s parameters, for i in

1, 2, . . . , d:

• e
(

gs
i
AB , g

)

= e
(

gs
i
A , gs

i
B

)

• e (gαAB , g) = e (gαA , gαB)

• e
(

gαAB si
AB , g

)

= e
(

gαAsi
A , gαBsi

B

)

Similarly Carol will have to prove that her CRS is a proper multiple of Alice-Bob’s CRS.

This is a robust CRS setup scheme which does not rely entirely on any single party. In fact, it is

sufficient if only one party is honest and deletes and never shares its secret parameters, even if

all other parties have colluded. So the more there are unrelated participants in CRS setup19 the

faintest the possibility of fake proofs, the probability becomes negligible if competing parties

are participating. The scheme allows involving other untrusted parties who are in doubt about

the legibility of the setup because verification step ensures they are not sabotaging (which also

includes usage of weak α and s) the final common reference string.

19Sometimes called ceremony [Wil16]

23

3.7 Succinct Non-Interactive Argument of Knowledge of Polynomial

We are now ready to consolidate the evolved zk-SNARKOP protocol. Being formal, for brevity,

we will be using curly brackets to denote a set of elements populated by the subscript next to

it, for example
{
si
}

i∈[d]
denotes a set s1, s2, . . . , sd.

Having agreed upon target polynomial t(x) and degree d of the prover’s polynomial:

• Setup

– sample random values s, α

– calculate encryptions gα and
{

gs
i
}

i∈[d]
,
{

gαs
i
}

i∈{0,...,d}

– proving key:

({

gs
i
}

i∈[d]
,
{

gαs
i
}

i∈{0,...,d}

)

– verification key:
(
gα, gt(s)

)

• Proving

– assign coefficients {ci}i∈{0,...,d} (i.e., knowledge), p(x) = cdx
d + · · ·+ c1x

1 + c0x
0

– calculate polynomial h(x) = p(x)
t(x)

– evaluate encrypted polynomials gp(s) and gh(s) using
{

gs
i
}

i∈[d]

– evaluate encrypted shifted polynomial gαp(s) using
{

gαs
i
}

i∈{0,...,d}

– sample random δ

– set the randomized proof π =
(
gδp(s), gδh(s), gδαp(s)

)

• Verification

– parse proof π as
(

gp, gh, gp
′

)

– check polynomial restriction e
(

gp
′

, g
)

= e (gp, gα)

– check polynomial cofactors e (gp, g) = e
(
gt(s), gh

)

Remark 3.3 If it would be possible to reuse result of pairing for another multiplication such

protocol would be completely insecure because the prover can assign gp
′

= e (gp, gα) which would

then pass the “polynomial restriction” check:

e (e (gp, gα) , g) = e (gp, gα)

3.7.1 Conclusions

We came to the zero-knowledge succinct non-interactive arguments of knowledge protocol for

the knowledge of a polynomial problem, which is a niche use-case. While one can claim that a

prover can easily construct such polynomial p(x) just by multiplying t(x) by another bounded

polynomial to make it pass the test, the construction is still useful.

24

Verifier knows that the prover has a valid polynomial but not which particular one. We could

add additional proofs of other properties of the polynomial such as: divides by multiple po-

lynomials, is a square of a polynomial. There could be a service which accepts, stores and

rewards all the attested polynomials, or there is a need in an encrypted evaluation of unknown

polynomials of a necessary form. However, having universal scheme would allow for a myriad

of applications.

4 General-Purpose Zero-Knowledge Proofs

We have paved our way with a simple yet sufficient example involving most of the zk-SNARK

machinery, and it is now possible to advance the scheme to execute zero-knowledge programs.

4.1 Computation

Let us consider a simple program in pseudocode:

Algorithm 1 Operation depends on an input

function calc(w, a, b)

if w then

return a × b

else

return a + b

end if

end function

From a high-level view, it is quite unrelated to polynomials, which we have the protocol for.

Therefore we need to find a way to convert a program into the polynomial form. The first step

then is to translate the program into the language of math, which is relatively easy, the same

statement can be expressed as following (assuming w is either 0 or 1):

f(w, a, b) = w(a× b) + (1− w)(a+ b)

Executing calc(1, 4, 2) and evaluating f(1, 4, 2) will yield the same result: 8. Conversely calc(0,

4, 2) and f(0, 4, 2) would both be resolved to 6. We can express any kind of finite program in

such a way.

What we need to prove then (in this example), is that for the input (1, 4, 2) of expression

f(w, a, b) the output is 8, in other words, we check the equality:

w(a × b) + (1− w)(a+ b) = 8

4.2 Single Operation

We now have a general computation expressed in a mathematical language, but we still need

to translate it into the realm of polynomials. Let us have a closer look at what computation is

25

in a nutshell. Any computation at it is core consists of elemental operations of the form:

left operand operator right operand = output

Two operands (i.e., values) are being operated upon by an operator (e.g., +,−,×,÷). For

example for operands 2 and 3 and operator “multiplication” these will resolve to 2 × 3 = 6.

Because any complex computation (or a program) is just a series of operations, firstly we need

to find out how single such operation can be represented by a polynomial.

4.2.1 Arithmetic Properties of Polynomials

Let us see how polynomials are related to arithmetic operations. If you take two polynomials

f(x) and g(x) and try, for example, to multiply them h(x) = f(x)×g(x), the result of evaluation

of h(x) at any x = r will be the multiplication of results of evaluations of f(r) and g(r). Let us

consider two following polynomials: f(x) = 2x2−9x+10 and g(x) = −4x2+15x−9. Visualized

in the form of graph:

1 2 3 4 x

f(x)

1 2 3 4 x

g(x)

For x = 1 these will evaluate to: f(1) = 2− 9 + 10 = 3, g(1) = −4 + 15− 9 = 2.

Let us multiply the polynomials: h(x) = f(x) × g(x) = −8x4 + 66x3 − 193x2 + 231x − 90.

Visually multiplication can be seen as:

1 2 3 4

3

x

f(x)

×

1 2 3 4

2

x

g(x)

=

1 2 3 4

6

x

f(x)× g(x)

If we examine evaluations at x = 1 on the resulting polynomial f(x)× g(x) we will get: h(1) =

−8 + 66 − 193 + 231 − 90 = 6, hence the values at x = 1 of f(x) and g(x) has multiplied, and

respectively at every other x.

26

Likewise if we add f(x) and g(x) we will get −2x2+6x+1 which evaluates to 5 at x = 1.

1 2 3 4

3

x

f(x)

+

1 2 3 4

2

x

g(x)

=

1 2 3 4

5

x

f(x) + g(x)

Note: evaluations at other x-s were also added together, e.g., examine x = 2, x = 3.

If we can represent operand values as polynomials (and we indeed can as outlined) then through

the arithmetic properties, we will be able to get the result of an operation imposed by an

operand.

4.3 Enforcing Operation

If a prover claims to have the result of multiplication of two numbers how does verifier checks

that? To prove the correctness of a single operation, we must enforce the correctness of the

output (result) for the operands provided. If we look again at the form of operation:

left operand operator right operand = output

The same can be represented as an operation polynomial :

l(x) operator r(x) = o(x)

where for some chosen a:

• l(x) - at a represents (evaluates to) the value of the left operand

• r(x) - at a represents the value of the right operand

• o(x) - at a represents the result (output) of the operation

Therefore if the operands and the output are represented correctly for the operation by those

polynomials, then the evaluation of l(a) operator r(a) = o(a) should hold. And moving output

polynomial o(x) to the left side of the equation l(a) operator r(a) − o(a) = 0 is surfacing

the fact that the operation polynomial l(x) operator r(x)− o(x) = 0 has to evaluate to 0 at

a, if the value represented by the output polynomial o(x) is the correct result produced by the

operator on the values represented by operand polynomials l(x) and r(x). Henceforth operation

polynomial must have the root a if it is valid, and consequently, it must contain cofactor (x−a)

as we have established previously (see factorization, section 3.2), which is the target polynomial

we prove against, i.e., t(x) = x− a.

27

For example, let us consider operation:

3× 2 = 6

It can be represented by simple polynomials l(x) = 3x, r(x) = 2x, o(x) = 6x, which evaluate

to the corresponding values for a = 1, i.e., l(1) = 3; r(1) = 2; o(1) = 6.

1 2 3 4

3

x

l(x)

1 2 3 4

2

x

r(x)

1 2 3 4

6

x

o(x)

Note: The value of a can be arbitrary.

The operation polynomial then will be:

l(x)× r(x) = o(x)

3x× 2x = 6x

6x2 − 6x = 0

Which is visualised as:

1 2 3

0

x

l(x)× r(x)− o(x)

It is noticeable that the operation polynomial has (x− 1) as a co-factor:

6x2 − 6x = 6x(x− 1)

Therefore if the prover provides such polynomials l(x), r(x), o(x) instead of former p(x) then

the verifier will accept it as valid, since it is divisible by t(x). On the contrary if the prover tries

to cheat and substitutes output value with 4, e.g., o(x) = 4x, then the operation polynomial

will be 6x2 − 4x = 0:

28

1 2 3 x

6x2 − 4x

Which is not have a solution x = 1, henceforth l(x)×r(x)−o(x) is not divisible by t(x) without

remainder:

h(x) = 6x+ 2

x− 1
)

6x2 − 4x

− 6x2 + 6x

2x

− 2x+ 2

2

⇒ h(x) = 6x+ 2 + 2
x−1

Hence such inconsistent operation will not be accepted by the verifier20.

4.4 Proof of Operation

Let us modify our latest protocol to support a single multiplication operation proof. Recall

that previously we had proof of knowledge of polynomial p(x), but now we deal with three

l(x), r(x), o(x). While we could define p(x) = l(x)× r(x)− o(x) there are two counterargument.

Firstly, in our protocol, the multiplication of encrypted values (i.e., l(s)× r(s)) is not possible

in the proving stage, since pairings can only be used once and it is required for the “polynomial

restriction” check. Secondly, this would leave an opportunity for the prover to modify the

structure of polynomial at will but still maintain a valid cofactor t(x), for example p(x) = l(x)

or p(x) = l(x) − r(x) or even p(x) = l(x) × r(x) + o(x), as long as p(x) has root a. Such

modification effectively means that the proof is about a different statement, which is certainly

not desired.

That is why the evaluations of polynomials l(s), r(s), o(s) have to be provided separately by

the prover. This means that the knowledge of polynomial must be adjusted. In essence what a

verifier needs to check in encrypted space is that l(s)×r(s)−o(s) = t(s)h(s). While a verifier can

perform multiplication using cryptographic pairings, the subtraction (−o(x)) is an expensive

operation21 that is why we move o(x) to the right side of the equation: l(x)r(x) = t(x)h(x)+o(x).

20As described in section 3.2
21Would require to find inverse of go(s)

29

In encrypted space verifier’s check translates to:

e
(

gl(s), gr(s)
)

= e
(

gt(s), gh(s)
)

· e
(

go(s), g
)

e(g, g)l(s)r(s) = e(g, g)t(s)h(s) · e(g, g)o(s)

e(g, g)l(s)r(s) = e(g, g)t(s)h(s)+o(s)

Note: recall that the result of cryptographic pairings supports encrypted addition through multi-

plication, see section 3.6.1.

While the setup stage stays unchanged, here is the updated protocol:

• Proving

– assign corresponding coefficients to the l(x), r(x), o(x)

– calculate polynomial h(x) = l(x)×r(x)−o(x)
t(x)

– evaluate encrypted polynomials gl(s), gr(s), go(s) and gh(s) using
{

gs
i
}

i∈[d]

– evaluate encrypted shifted polynomials gαl(s), gαr(s), gαo(s) using
{

gαs
i
}

i∈{0,...,d}

– set proof π =
(
gl(s), gr(s), go(s), gh(s), gαl(s), gαr(s), gαo(s)

)

• Verification

– parse proof π as
(

gl, gr, go, gh, gl
′

, gr
′

, go
′

)

– polynomial restrictions check:

e(gl
′

, g) = e(gl, gα)

e(gr
′

, g) = e(gr , gα)

e(go
′

, g) = e(go, gα)

– valid operation check: e
(
gl, gr

)
= e

(
gt(s), gh

)
· e (go, g)

Such protocol allows to prove that the result of multiplication of two values is computed

correctly.

One might notice that in the updated protocol we had to let go of the zero-knowledge compo-

nent. The reason for this is to make the transition simpler. We will get back to it in a later

section.

4.5 Multiple Operations

We can prove a single operation, but how do we scale to prove multiple operations (which is our

ultimate goal)? Let us try to add just one another operation. Consider the need to compute

the product: a×b×c. In the elemental operation model this would mean two operations:

a × b = r1

r1 × c = r2

30

As discussed previously we can represent one such operation by making operand polynomials

evaluate to a corresponding value at some arbitrary x, for example 1. Having this the properties

of polynomials does not restrict us in representing other values at different x, for example 2,

e.g.:

1 2 3

a

r1

x

l(x)

×

1 2 3

b

c

x

r(x)

=

1 2 3

r1

r2

x

o(x)

Such independence allows us to execute two operations at once without “mixing” them together,

i.e., no interfering. The result of such polynomial arithmetic will be:

1 2 3 x

l(x)× r(x)− o(x)

Where it is visible that the operation polynomial has roots x = 1 and x = 2. Therefore both

operations are executed correctly.

Let us have a look at example of 3 multiplications 2 × 1 × 3 × 2, which can be executed as

follows:

2 × 1 = 2

2 × 3 = 6

6 × 2 = 12

We need to represent those as operand polynomials, such that for operations represented by x ∈

{1, 2, 3} the l(x) pass correspondingly through 2, 2 and 6, i.e., through points (1, 2), (2, 2), (3, 6),

and similarly r(x) ∋ (1, 1), (2, 3), (3, 2) and o(x) ∋ (1, 2), (2, 6), (3, 12).

However, how do we find such polynomials which passes through those points? For any case

where we have more than one point, a particular mathematical method has to be used.

31

4.5.1 Polynomial Interpolation

In order to construct operand and output polynomials we need a method which given a set of

points produces a curved polynomial in such a way that it passes through all those points, it is

called interpolation There are different ways available:

• Set of equations with unknowns

• Newton polynomial

• Neville’s algorithm

• Lagrange polynomials

• Fast Fourier transform

Let us use the former for example. The idea of such method is that there exists a unique

polynomial of degree at most n with yet unknown coefficients which pass through given n + 1

points such that for each point {(xi, yi)}i∈[n+1] the polynomial evaluated at xi should be equal

to yi. In our case for three points it will be polynomial of degree 2 of the form:

ax2 + bx+ c = y

Let us equalize the evaluated polynomial for each point of the left operand polynomial (green)

and solve the system of equations by expressing each coefficient in terms of others:







l(1) = 2

l(2) = 2

l(3) = 6

⇒







a(1)2 + b · 1 + c = 2

a(2)2 + b · 2 + c = 2

a(3)2 + b · 3 + c = 6

⇒







a+ b+ c = 2

4a+ 2b+ c = 2

9a+ 3b+ c = 6

⇒







a = 2− b− c

2b = 2− 4(2 − b− c)− c

c = 6− 9(2 − b− c)− 3b

⇒







a = 2− b− c

b = 6−3c
2

c = −12 + 6b+ 9c

⇒







a = 2− b− c

b = 6−3c
2

c = −12 + 6(6−3c
2) + 9c

⇒







a = 2

b = −6

c = 6

Therefore the left operand polynomial is:

l(x) = 2x2 − 6x+ 6

Which corresponds to the following graph:

32

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

l(x)

We can find r(x) and o(x) in the same way:

r(x) =
−3x2 + 13x− 8

2
; o(x) = x2 + x

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

r(x)

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

o(x)

4.5.2 Multi-Operation Polynomials

Now we have operand polynomials which represent three operations, let us see step-by-step

how the correctness of each operation is verified. Recall that a verifier is looking for equality

l(x) × r(x) − o(x) = t(x)h(x). In this case, because the operations are represented at points

x ∈ {1, 2, 3} the target polynomial has to evaluate to 0 at those x-s, in other words, the roots

of the t(x) must be 1, 2 and 3, which in elementary form is:

33

1 2 3 4 x

t(x) = (x− 1)(x − 2)(x − 3)

Firstly, l(x) and r(x) are multiplied which results in:

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

l(x)

×

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

r(x)

=

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

−3x4 + 22x3 − 56x2 + 63x− 24

Secondly, the o(x) is subtracted from the result of l(x)× r(x):

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

l(x)× r(x)

−

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

o(x)

=

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

x

−3x4 + 22x3 − 57x2 + 62x− 24

Where it is already visible that every operands multiplication corresponds to a correct result.

For the last step a prover needs to present a valid cofactor:

h(x) =
l(x)× r(x)− o(x)

t(x)
=

−3x4 + 22x3 − 57x2 + 62x− 24

(x− 1)(x− 2)(x − 3)

Using long division we get:

34

h(x) = − 3x + 4

x3 − 6x2 + 11x− 6
)
− 3x4 + 22x3 − 57x2 + 62x− 24

3x4 − 18x3 + 33x2 − 18x

4x3 − 24x2 + 44x− 24

− 4x3 + 24x2 − 44x+ 24

0

With h(x) = −3x+ 4 a verifier can compute t(x)h(x):

1 2 3 4 x

t(x)

×

1 2 3 4 x

h(x)

=

1 2 3 4 x

−3x4 + 22x3 − 57x2 + 62x− 24

It is now evident that l(x)× r(x)− o(x) = t(x)h(x) which is what had to be proven.

4.6 Variable Polynomials

With such an approach, we can prove many operations at once (e.g., millions and more), but

there is a critical downside to it.

If the “program,” execution for which is being proved, uses the same variable, either as an

operand or as output, in different operations, for example:

a × b = r1

a × c = r2

The a will have to be represented in the left operand polynomial for both operations as:

1 2 3

a a

x

l(x)

35

Nevertheless, because our protocol allows prover to set any coefficients to a polynomial, he is

not restricted from setting different values of a for different operations (i.e., represented by some

x), e.g.:

1 2 3

a

a′

x

l′(x)

This freedom breaks consistency and allows prover to prove the execution of some other program

which is not what verifier is interested in. Therefore we must ensure that any variable can only

have a single value across every operation it is used in.

Note: variable in this context differs from the regular computer science definition in a sense

that it is immutable and is only assigned once per execution.

4.6.1 Single-Variable Operand Polynomial

Let us consider a simple case (as with the current example) where we have only one variable

(e.g., a) used in all left operands represented by the left operand polynomial l(x). We have

to find out if it is possible to ensure that this polynomial represents the same values of a for

every operation. The reason why a prover can set different values is that he has control over

each coefficient for every exponentiation of x. Therefore if those coefficients were constant, that

would solve the variability problem.

May us have a closer look at polynomials containing equal values. For example examine two

polynomials representing equal values for the two operations correspondingly (i.e., at x = 1 and

x = 2), where the first polynomial contains value 1 and the second contains value 2:

1 2 3

1 1

x

x2 − 3x+ 3

1 2 3

2 2

x

2x2 − 6x+ 6

Notice that the corresponding coefficients are proportional in each polynomial, such that coef-

ficients in the second are twice as large as in the first, i.e.:

2x2 − 6x+ 6 = 2× (x2 − 3x+ 3)

36

Therefore when we want to change all the values simultaneously in a polynomial we need to

change its proportion, this is due to arithmetic properties of polynomials, if we multiply a

polynomial by a number, evaluations at every possible x will also be multiplied (i.e., scaled).

To verify, try to multiply the first polynomial by 3 or any other number.

Consequently, if a verifier needs to enforce the prover to set the same value in all operations, then

it should only be possible to modify the proportion and not the individual coefficients.

So how coefficients proportion can be preserved? We can start by considering what is provided

as proof for the left operand polynomial. It is an encrypted evaluation of l(x) at some secret

s: gl(s), i.e., it is an encrypted number. We already know from section 3.4 how to restrict a

verifier to use only the provided exponents of s through an α-shift, such that homomorphic

multiplication is the single operation available.

Similarly to restricting a single exponent, the verifier can restrict the whole polynomial at once.

Instead of providing separate encryptions gs
1
, gs

2
, . . . , gs

d
and their α-shifts gαs

1
, gαs

2
, . . . , gαs

d

the protocol proceeds:

• Setup

– construct the respective operand polynomial l(x) with corresponding coefficients

– sample random α and s

– set proving key with encrypted l(s) and it is “shifted” pair:
(
gl(s), gαl(s)

)

– set verification key: (gα)

• Proving

– having operand’s value v

∗ multiply operand polynomial :
(
gl(s)

)v

∗ multiply shifted operand polynomial :
(
gαl(s)

)v

– provide operand polynomial multiplication proof:
(
gv l(s), gv αl(s)

)

• Verification

– parse the proof as
(

gl, gl
′

)

– verify proportion: e
(

gl
′

, g
)

= e
(
gl, gα

)

Prover needs to respond with the same α-shift and because he cannot recover α from the

proving key the only way to maintain the shift is to multiply both encryptions gl(s) and gαl(s)

by the same value. Therefore prover cannot modify individual coefficients of l(x), for example

if l(x) = ax2 + bx + c he can only multiply the whole polynomial at once by some value v:

v(ax2 + bx+ c) = vax2 + vbx+ vc. Multiplication by another polynomial is not available since

pairings, and α-shifts of individual exponents of s are not available. Prover cannot add or

subtract either since gα(l(x)+a′x2+c′) 6= gαl(x) · ga
′x2

· gc
′

(this, again, requires the knowledge of

unencrypted α).

37

We now have the protocol, but how operand polynomial l(x) should be constructed? Since

any integer can be derived by multiplying 1, the polynomial should evaluate to 1 for every

corresponding operation, e.g.:

1 2 3

1 1

x

l(x)

This allows a prover to assign the value of a:

1 2 3

a a

x

a× l(x)

Remark 4.1 Since verification key contains gα it is possible to add (or subtract) an arbitrary

value v′ to the polynomial, i.e.:

gvl(s) · gv
′

= gvl(s)+v′

gαvl(s) · (gα)v
′

= gα(vl(s)+v′)

e
(

gα(vl(s)+v′), g
)

= e
(

gvl(s)+v′ , gα
)

Therefore it is possible to modify the polynomial beyond what is intended by the verifier and

prove a different statement. We will address this shortcoming in section 4.9.3.

4.6.2 Multi-Variable Operand Polynomial

We are now able to singularly set value only if all left operands use the same variable. What if

we add another one d:

38

a × b = r1

a × c = r2

d × c = r3

1 2 3

a a

d

x

l(x)

If we have used the same approach we would not be able to set the value separately for each

variable, and every distinct variable will be multiplied altogether. Hence such restricted poly-

nomial can support only one variable. If we examine properties of polynomials, we will see that

adding polynomials together adds distinct evaluations of those polynomials. Therefore we can

separate the operand polynomial l(x) into operand variable polynomials la(x) and ld(x) (note the

subscripts) such that variables a and d are assigned and restricted separately similarly to the

previous section and then added together to represent variables of all left operands. Because we

add operand variable polynomials together, we need to ensure that only one of all the variables

is represented for each operation by the operand polynomial.

Using the arithmetic properties we can construct each operand variable polynomial such that if

variable is used as an operand in the corresponding operation then it evaluates to 1, otherwise

to 0. Consecutively 0 multiplied by any value will remain zero and when added together it

will be ignored. For our example la(x) must conform to evaluations la(1) = 1, la(2) = 1 and

la(3) = 0 and ld(x) is zero at 1 and 2 but 1 at x = 3:

1 2 3

1 1

0

x

la(x)

1 2 3

0 0

1

x

ld(x)

Consequently we can set the value of each variable separately and just add them together to

get the operand polynomial, for example if a = 3 and d = 2:

1 2 3

3a 3a

0

x

3 · la(x)

+

1 2 3

0 0

2d

x

2 · ld(x)

=

1 2 3

3a 3a

2d

x

3 · la(x) + 2 · ld(x)

39

Note: we are using subscript next to a value to indicate which variable it represents, e.g., 3a is

a variable a instantiated with value 3.

Let us denote such composite operand polynomial with an upper-case letter from now on, e.g.,

L(x) = a la(x) + d ld(x), and its evaluation value as L, i.e., L = L(s). This construction will

only be effective if each operand variable polynomial is restricted by the verifier, the interaction

concerning left operand shall be altered accordingly:

• Setup

– construct la(x), ld(x) such that it passes through 1 at “operation x” where it is used

and through 0 in all other operations

– sample random s, α

– evaluate and encrypt unassigned variable polynomials:

gla(s), gld(s)

– calculate shifts of these polynomials:

gαla(s), gαld(s)

– set proving key:
(
gla(s), gld(s), gαla(s), gαld(s)

)

– set verification key:

(gα)

• Proving

– assign values a and d to the variable polynomials:
(
gla(s)

)a
,
(
gld(s)

)d

– assign same values to the shifted polynomials:
(
gαla(s)

)a
,
(
gαld(s)

)d

– add all assigned variable polynomials to form an operand polynomial :

gL(s) = gala(s) · gdld(s) = gala(s)+dld(s)

– add shifted assigned variable polynomials to form a shifted operand polynomial :

gαL(s) = gaαla(s) · gdαld(s) = gα(ala(s)+dld(s))

– provide proof of valid assignment of left operand :
(
gL(s), gαL(s)

)

• Verification

– parse proof as
(

gL, gL
′

)

– check that provided polynomials is a sum of multiples of originally provided unassi-

gned variable polynomials:

e
(

gL
′

, g
)

= e
(
gL, gα

)
which checks that

αala(s) + α dld(s) = α× (ala(s) + dld(s))

40

Note: L(s) and αL(s) represent all variable polynomials at once and since α is used only in

evaluation of variable polynomials, the prover has no option but to use provided evaluations and

assign same coefficients to original and shifted variable polynomials.

As a consequence the prover:

• is not able to modify provided variable polynomials by changing their coefficients, except

“assigning” values, because prover is presented only with encrypted evaluations of these

polynomials, and because necessary encrypted powers of s are unavailable separately with

their α-shifts

• is not able to add another polynomial to the provided ones because the α-ratio will be

broken

• is not able to modify operand polynomials through multiplication by some other polyno-

mial u(x), which could disproportionately modify the values because encrypted multipli-

cation is not possible in pre-pairings space

Note: if we add (or subtract) one polynomial, e.g., la(x), to the other, e.g., l′d(x) = cd · ld(x) +

c′a · la(x), that is not really a modification of the polynomial ld(x), but rather changing of the

resulting coefficient of the la(x), because they are summed up in the end:

L(x) = ca · la(x) + l′d(x) = (ca + c′a) · la(x) + cd · ld(x)

While the prover restricts the use of polynomials, there is still some freedoms which are not

necessary to counteract:

• it is acceptable if the prover decides not to add some of the assigned variable polynomials

li(x) to form the operand polynomial L(x) because it is the same as to assign the value

0: gala(x) = gala(x)+0ld(x)

• it is acceptable if the prover adds same variable polynomials multiple times because it is

the same as to assign the multiple of that value once, e.g., gala(x) ·gala(x) ·gala(x) = g3ala(x)

This approach is applied similarly to the right operand and output polynomials R(x), O(x).

4.7 Construction Properties

There are multiple additional useful properties which are acquired as a side-effect of such

modification.

4.7.1 Constant Coefficients

In the above construction, we have been using evaluations of unassigned variable polynomials

1 or 0 as a means to signify if the variable is used in operation or not. Naturally, there is

nothing that stops us from using other coefficients as well, including negative ones, because

41

we can interpolate polynomials through any necessary points22. Examples of such operations

are:

2a × 1b = 3r

−3a × 1b = −2r

Therefore our program can now use constant coefficients, for example:

Algorithm 2 Constant coefficients

function calc(w, a, b)
if w then

return 3a × b
else

return 5a × 2b
end if

end function

These coefficients will be “hardwired” during the setup stage and similarly to 1 or 0 will be

immutable. We can modify the form of operation accordingly:

ca · a × cb · b = cr · r

Or more formally, for variables vi ∈ {v1, v2, ..., vn}:

cl · vl × cr · vr = co · vo

where l, r, o are indices of a variable used in operation.

Note: constant coefficient for the same variable can be different in different operations and

operands/outputs.

4.7.2 Addition for Free

Considering the updated construction, it is apparent that in polynomial representation every

operand expressed by some distinct x is a sum of all operand variable polynomials such that only

single used variable can have a non-zero value and all others are zero. The graph demonstrates

it best:

22Provided that no two operations occupy same x

42

1 2 3

a ·
la(
x)

b
· l

b (x)

c
· l
c
(x
)

L
(x
)

a b

c

x

We can take advantage of such construction and allow to add any number of necessary variables

for each operand in operation. For example in the first operation, we can add a + c first and

only then multiply it by some other operand, e.g., (a+ c) × b = r , this can be represented

as:

1 2 3

a ·
la(
x)

b
· l

b (x)

c
· l
c
(x
)

L
(x
)

a

c

a + c

b

c

x

Therefore it is possible to add any number of present variables in a single operand, using arbitrary

coefficients for each of them, to produce an operand value which will be used in a corresponding

operation, as needed in a respective program. Such property effectively allows changing the

operation construction to:

(c l,a · a+ c l,b · b+ . . .) × (c r,a · a+ c r,b · b+ . . .) = (c o,a · a+ c o,b · b+ . . .)

Or more formally, for variables vi ∈ {v1, v2, ..., vn} and operand variable coefficients c l,i ∈

{c l,1, c l,2, ..., c r,n}, c r,i ∈ {c r,1, c r,2, ..., c r,n}, c o,i ∈ {c o,1, c o,2, ..., c o,n}:
n∑

i=1

c l,i · vi ×

n∑

i=1

c r,i · vi =

n∑

i=1

c o,i · vi

Note: each operation’s operand has its own set of coefficients c.

4.7.3 Addition, Subtraction and Division

We have been focusing on multiplication operation primarily until now. However, in order to

be able to execute general computations, a real-life program will also require addition, division,

and subtraction.

43

Addition In previous section we have established that we can add variables in context of

a single operand, which is then multiplied by another operand, e.g., (3a+ b) × d = r , but

what if we need just addition without multiplication, for example, if a program needs to compute

a + b, we can express this as:

(a+ b) × 1 = r

Note: because our construction requires both a constant coefficient and a variable (c · v) for

every operand, the value of 1 is expressed as cone · vone, and while cone = 1 can be “hardwired”

into a corresponding polynomial, the vone is a variable and can be assigned any value, therefore

we must enforce the value of vone through constraints as explained in section 4.10.

Subtraction Subtraction is almost identical to addition, the only difference is a negative

coefficient, e.g., for a− b:

(a+−1 · b) × 1 = r

Division If we examine the division operation factor

divisor
= result we would see that the result of

the division is the number we need to multiply divisor by to produce the factor. Therefore we

can express the same meaning through multiplication: divisor × result = factor. Consequently,

if we want to prove the division operation a
b = r, it can be expressed as:

b × r = a

Note: the operation’s construction is also called “constraint” because the operation represented

by polynomial construction does not compute results per se, but rather checks that the prover

already knows variables (including result), and they are valid for the operation, i.e., the prover

is constrained to provide consistent values no matter what they are.

Note: all those arithmetic operations were already present; therefore modification of the opera-

tion’s construction is not needed.

4.8 Example Computation

Having the general operation’s construction, we can convert our original algorithm 1 into a set

of operations and further into polynomial form. Let us consider the mathematical form of the

algorithm (we will use variable v to capture the result of evaluation):

w × (a× b) + (1− w)× (a+ b) = v

It has three multiplications, and because the operation construction supports only one, there

will be at least 3 operations. However, we can simplify the equation:

w × (a× b) + a+ b− w × (a+ b) = v

w × (a× b− a− b) = v − a− b

44

Now it requires two multiplications while maintaining same relationships. In complete form the

operations are:

1 : 1 · a × 1 · b = 1 ·m

2 : 1 · w × 1 ·m + −1 · a + −1 · b = 1 · v + −1 · a + −1 · b

We can also add a constraint that requires w to be binary, otherwise a prover can use any value

for w rendering computation incorrect:

3 : 1 · w × 1 · w = 1 · w

To see why w can only be 0 or 1, we can represent the equation as w2 − w = 0 and further as

(w − 0)(w − 1) = 0 where 0 and 1 are the only solutions.

These totals to 5 variables, with 2 in the left operand, 4 in the right operand and 5 in the

output. The operand polynomials are:

L(x) = a · la(x) + w · lw(x)

R(x) = m · rm(x) + a · ra(x) + b · rb(x) + w · rw(x)

O(x) = m · om(x) + v · ov(x) + a · oa(x) + b · ob(x) + w · ow(x)

where each variable polynomial must evaluate to a corresponding coefficient for each of 3

operations or to 0 if the variable isn’t present in the operation’s operand or output:

la(1) = 1; la(2) = 0; la(3) = 0;

lw(1) = 0; lw(2) = 1; lw(3) = 1;

rm(1) = 0; rm(2) = 1; rm(3) = 0;

ra(1) = 0; ra(2) = −1; ra(3) = 0;

rb(1) = 1; rb(2) = −1; rb(3) = 0;

rw(1) = 0; rw(2) = 0; rw(3) = 1;

om(1) = 1; om(2) = 0; om(3) = 0;

ov(1) = 0; ov(2) = 1; ov(3) = 0;

oa(1) = 0; oa(2) = −1; oa(3) = 0;

ob(1) = 0; ob(2) = −1; ob(3) = 0;

ow(1) = 0; ow(2) = 0; ow(3) = 1;

Consequently the cofactor polynomial is t(x) = (x− 1)(x− 2)(x− 3), which will ensure that all

three operations are computed correctly.

Next we leverage polynomial interpolation to find each variable polynomial :

la(x) =
1

2
x2 −

5

2
x+ 3;

lw(x) = −
1

2
x2 +

5

2
x− 2;

rm(x) = −x2 + 4x− 3;

ra(x) = x2 − 4x+ 3;

rb(x) =
3

2
x2 −

13

2
x+ 6;

rw(x) =
1

2
x2 −

3

2
x+ 1;

om(x) =
1

2
x2 −

5

2
x+ 3;

ov(x) = −x2 + 4x− 3;

oa(x) = x2 − 4x+ 3;

ob(x) = x2 − 4x+ 3;

ow(x) =
1

2
x2 −

3

2
x+ 1;

Which are plotted as:

45

1 2 3

l
a (x

)

a

l w
(x
)

w w

x 1 2 3

r m
(x
)

r
a (x

)
r
b (x

)r
w (x) b m

−a,−b

w

x 1 2 3

o
m
(x
)

o v
(x
)

o
w (x)

o a
(x
),
o b
(x
)

o a
(x
),
o b
(x
)

o a
(x
),
o b
(x
)

m v

−a,−b

w

x

We are ready to prove computation through polynomials. Firstly, let us choose input values

for the function, for example w = 1, a = 3, b = 2. Secondly, calculate values of intermediary

variables from operations:

m = a× b = 6

v = w(m− a− b) + a+ b = 6

After, we assign all values involved in the computation of the result to the corresponding variable

polynomials and sum them up to form operand and output polynomials:

L(x) = 3 · la(x) + 1 · lw(x) = x2 − 5x+ 7

R(x) = 6 · rm(x) + 3 · ra(x) + 2 · rb(x) + 1 · rw(x) =
1

2
x2 − 2

1

2
x+ 4

O(x) = 6 · om(x) + 6 · ov(x) + 3 · oa(x) + 2 · ob(x) + 1 · ow(x) = 2
1

2
x2 − 12

1

2
x+ 16

and in the graph form these are:

46

1 2 3

3
·
l
a (x

)

1
· l
w
(x
)

3a

1w 1w

x 1 2 3

6
·
r m

(x
)

3
·
r
a (x

)

2
·
r
b (x

)

1
· r

w (x)

2b

6m

−3a

−2b

1w

x 1 2 3

6
·
o
m
(x
)

6
·
o
v
(x
)

1
· o

w (x)
3
·
o
a (x

)

2
·
o
b (x

)

6m 6v

−3a

−2b

1w

x

Summed up to represent operand and output values in corresponding operations:

1 2 3

1

2

3

4

5

6

L
(x
)

3a

1w 1w

x 1 2 3

1

2

3

4

5

6

R
(x
)

2b

6m − 3a − 2b

1w

x 1 2 3

1

2

3

4

5

6

O
(x
)

6m

6v − 3a − 2b

1w

x

We need to prove that L(x)×R(x)−O(x) = t(x)h(x), therefore we find h(x):

h(x) =
L(x)×R(x)−O(x)

t(x)
=

1
2x

4 − 5x3 + 35
2 x

2 − 25x+ 12

(x− 1)(x− 2)(x− 3)
=

1

2
x− 2

In a graph form it is represented as:

47

1 2 3

6a×b

1w×(m−a−b) 1w×w

x

L(x)×R(x)

1 2 3

6m

1v−a−b

1w

x

O(x)

1 2 3 x

L(x)×R(x)−O(x)

Where it’s visible that polynomial L(x) × R(x) − O(x) has solutions x = 1, x = 2 and x = 3,

and therefore t(x) is its cofactor, which would not be the case if we used inconsistent values of

variables.

That is how the knowledge of variable values for a correct computation execution is proven

on the level of polynomials. A prover is then proceeding with a cryptographic portion of the

protocol.

4.9 Verifiable Computation Protocol

We went through many important modifications of the knowledge of polynomial protocol (sec-

tion 3.7) to make it general-purpose, so let us see how it is defined now. Assuming agreed

upon function f(∗) the result of computation of which is the subject of the proof, with the

number of operations d, the number of variables n and corresponding to them coefficients

{cl,i,j, cr,i,j, co,i,j}i∈{1,...,n},j∈{1,...,d}:

• Setup

– construct variable polynomials for left operand {li(x)}i∈{1,...,n} such that for all ope-

rations j ∈ {1, . . . , d} they evaluate to corresponding coefficients, i.e., li(j) = cl,i,j,

and similarly for right operand and output

– sample random s, α

– calculate t(x) = (x− 1)(x − 2) . . . (x− d) and its evaluation gt(s)

– compute proving key:

({

gs
k
}

k∈[d]
,
{
gli(s), gri(s), goi(s), gαli(s), gαri(s), gαoi(s)

}

i∈{1,...,n}

)

– compute verification key:
(
gt(s), gα

)

48

• Proving

– compute function f(∗) and therefore corresponding variables values {vi}i∈{1,...,n}

– calculate h(x) = L(x)×R(x)−O(x)
t(x) , where L(x) =

∑n
i=1 vi·li(x), and similarly R(x), O(x)

– assign variable values and sum up to get operand polynomials:

gL(s) =
(

gl1(s)
)v1

· · ·
(

gln(s)
)vn

, gR(s) =
n∏

i=1

(

gri(s)
)vi

, gO(s) =
n∏

i=1

(

goi(s)
)vi

– assign variable values to the shifted polynomials:

gαL(s) =
n∏

i=1

(

gαli(s)
)vi

, gαR(s) =
n∏

i=1

(

gαri(s)
)vi

, gαO(s) =
n∏

i=1

(

gαoi(s)
)vi

– calculate encrypted evaluation gh(s) using provided powers of s:
{

gs
k
}

k∈[d]

– set proof:
(
gL(s), gR(s), gO(s), gαL(s), gαR(s), gαO(s), gh(s)

)

• Verification

– parse proof as
(

gL, gR, gO, gL
′

, gR
′

, gO
′

, gh
)

– variable polynomials restriction check:

e(gL, gα) = e(gL
′

, g), e(gR, gα) = e(gR
′

, g), e(gO, gα) = e(gO
′

, g)

– valid operations check:

e(gL, gR) = e(gt, gh) · e(gO, g)

Note: using symbol
∏

allows for a concise way to express product of multiple elements, i.e.,
∏n

i=1 vi = v1 · v2 · . . . · vn .

The set of all the variable polynomials {li(x), ri(x), oi(x)}i∈{1,...,n} and the target polynomial

t(x) is called a quadratic arithmetic program (QAP23).

While the protocol is sufficiently robust to allow a general computation verification, there are

two security considerations that must be addressed.

4.9.1 Non-Interchangeability of Operands and Output

Because we use the same α for all the operands of variable polynomials restriction there is

nothing that prevents prover from:

• using variable polynomials from other operands, e.g., L′(s) = o1(s) + r1(s) + r5(s) + . . .

• swapping operand polynomials completely, e.g., O(s) with L(s) will result in operation

O(s) × R(s) = L(s)

• re-using same operand polynomials e.g., L(s) × L(s) = O(s)

23Gen+12.

49

This interchangeability means that the prover can alter the execution and effectively prove some

other computation. The obvious way to prevent such behavior is to use different α-s for the

different operands, concretely we modify:

• Setup

. . .

– sample random αl, αr, αo instead of α

– calculate corresponding “shifts”
{
gαlli(s), gαrri(s), gαooi(s)

}

i∈{1...n}

– proving key:

({

gs
k
}

k∈[d]
,
{
gli(s), gri(s), goi(s), gαlli(s), gαrri(s), gαooi(s)

}

i∈{1...n}

)

– verification key:
(
gt(s), gαl , gαr , gαo

)

• Proving

. . .

– assign variables to the “shifted” polynomials

gαlL(s) =
n∏

i=1

(

gαlli(s)
)vi

, gαrR(s) =
n∏

i=1

(

gαrri(s)
)vi

, gαoO(s) =
n∏

i=1

(

gαooi(s)
)vi

– set proof:
(
gL(s), gR(s), gO(s), gαlL(s), gαrR(s), gαoO(s), gh(s)

)

• Verification

. . .

– variable polynomials restriction check:

e
(
gL, gαl

)
= e

(

gL
′

, g
)

, e
(
gR, gαr

)
= e

(

gR
′

, g
)

, e
(
gO, gαo

)
= e

(

gO
′

, g
)

It is now not possible to use variable polynomials from other operands since αl, αr, αo are not

known to the prover.

4.9.2 Variable Consistency Across Operands

For any variable vi we have to assign its value to a variable polynomial for each correspon-

ding operand, i.e.,
(
gli(s)

)vi
,
(
gri(s)

)vi
,
(
goi(s)

)vi
. Because the validity of each of the operand

polynomials is checked separately, no enforcement requires to use same variable values in the

corresponding variable polynomials. This means that the value of variable v1 in left operand

can differ from variable v1 in the right operand or the output.

We can enforce equality of a variable value across operands through already familiar approach

of restricting a polynomial (as we did with variable polynomials). If we can create a “shifted

checksum” variable polynomial across all operands, that would restrain prover such that he can

assign only same value. A verifier can combine polynomials for each variable into one, e.g.,

gli(s)+ri(s)+oi(s), and shift it by some other random value β, i.e., gβ(li(s)+ri(s)+oi(s)). This shifted

50

polynomials are provided to the prover to assign values of the variables alongside with variable

polynomials:
(

gli(s)
)vl,i

,
(

gri(s)
)vr,i

,
(

goi(s)
)vo,i

,
(

gβ(li(s)+ri(s)+oi(s))
)vβ,i

And the β is encrypted and added to the verification key gβ . Now, if the values of all vi were

the same (i.e., vl,i = vr,i = vo,i = vβ,i for i ∈ {1, . . . , n}), the equation shall hold:

e
(

gvl,i · li(s) · gvr,i · ri(s) · gvo,i · oi(s), gβ
)

= e
(

gvβ,i · β(li(s)+ri(s)+oi(s)), g
)

While this is a useful consistency check, due to the non-negligible probability that at least two of

l(s), r(s), o(s) could either have same evaluation value or one polynomial is divisible by another

etc., this would allow the prover to factor values vl,i, vr,i, vo,i, vβ,i such that at least two of them

are non-equal but the equation holds, rendering the check ineffective:

(vl,i · li(s) + vr,i · ri(s) + vo,i · oi(s)) · β = vβ,i · β · (li(s) + ri(s) + oi(s))

For example, let us consider a single operation, where it is the case that l(x) = r(x). We will

denote evaluation of those two as w = l(s) = r(s) and y = o(x). The equation then will look

as:

β(vl w + vr w + vo y) = vβ · β(w + w + y)

Such form allows, for some arbitrary vr and vo, to set vβ = vo, vl = 2vo − vr, which will

translate into:

β(2vo w − vr w + vr w + vo y) = vo · β(2w + y)

Hence such consistency strategy is not effective. A way to mitigate this is to use different β

for each operand, ensuring that operand’s variable polynomials will have unpredictable values.

Following are the protocol modifications:

• Setup

– . . . sample random βl, βr, βo

– calculate, encrypt and add to the proving key the variable consistency polynomials:
{
gβlli(s)+βrri(s)+βooi(s)

}

i∈{1,...,n}

– encrypt β-s and add to the verification key:
(
gβl , gβr , gβo

)

• Proving

– . . . assign variable values to the variable consistency polynomials:

gzi(s) =
(
gβlli(s)+βrri(s)+βooi(s)

)vi
for i ∈ {1, . . . , n}

– add assigned polynomials in encrypted space:

gZ(s) =

n∏

i=1

gzi(s) = gβlL(s)+βrR(s)+βoO(s)

– add to the proof: gZ(s)

• Verification

51

– . . . check the consistency between provided operand polynomials and the “checksum”

polynomial:

e
(

gL, gβl

)

· e
(

gR, gβr

)

· e
(

gO, gβo

)

= e
(
gZ , g

)

which is equivalent to:

e (g, g)βlL+βrR+βoO = e (g, g)Z

Same variable values tempering technique will fail in such construction because different β-s

makes the same polynomials incompatible for manipulation. There is however a flaw similar

to the one in remark 4.1, concretely because the terms gβl , gβr , gβo are publicly available an

adversary can modify the zero-index coefficient of any of the variable polynomials since it does

not rely on s, i.e., gβls
0
= gβl .

4.9.3 Non-malleability of Variable and Variable Consistency Polynomials

Malleability of Variable Polynomials

Let us exemplify remark 4.1 with the following two operations:

a × 1 = b

3a × 1 = c

The expected result is b = a and c = 3a, with clear relationship c = 3b. This implies that

the left operand’s variable polynomial has evaluations la(1) = 1 and la(2) = 3. Regardless of

the form of la(x), a prover can unproportionately assign the value of a, by providing modified

polynomial l′a(x) = ala(x) + 1. Therefore evaluations will be l′a(1) = a+ 1 and l′a(2) = 3a + 1,

hence the results b = a + 1 and c = 3a + 1 where c 6= 3b, effectively meaning that the value of

a is different for different operations.

Because the prover has access to gαl and gβl he can satisfy both the correct operand polynomials

and variable values consistency checks:

• . . . proving:

– form left operand polynomial by unproportionately assigning variable a:

L(x) = a · la(x) + 1

– form right operand and output polynomials as usual:

R(x) = r1(x), O(x) = b · ob(x) + c · oc(x)

– calculate the remainder h(x) = L(x)·R(x)−O(x)
t(x)

– compute encryption: gL(s) =
(
gla(s)

)a
· g1 and as usual for gR(s), gO(s)

– compute α-shifts: gαL(s) =
(
gαla(s)

)a
· gα and as usual for gαR(s), gαO(s)

– compute variable consistency polynomials:

gZ(s) =
∏

i∈{1,a,b,c}

(

gβlli(s)+βrri(s)+βooi(s)
)i

· gβl = gβl(L(s)+1)+βrR(s)+βoO(s)

52

where the subscript i represents symbol of the corresponding variable while the exponent i represents

the value of variable; moreover undefined variable polynomials are equal to zero.

– set proof:
(
gL(s), gR(s), gO(s), gαlL(s), gαrR(s), gαoO(s), gZ(s)gh(s)

)

• verification:

– variable polynomials restriction check:

e
(

gL
′

, g
)

= e
(
gL, gα

)
⇒ e

(

gαa·la(s)+α, g
)

= e
(

gala(s)+1, gα
)

and as usually for gR
′

, gO
′

– variable values consistency check

e
(

gL, gβl

)

· e
(

gR, gβr

)

· e
(

gO, gβo

)

= e
(
gZ , g

)
⇒

e (g, g)(a·la+1)βl+Rβr+Oβo = e (g, g)βl(L+1)+βrR+βoO

– valid operations check e(gL, gR) = e(gt, gh) · e(gO, g)

Malleability of Variable Consistency Polynomials

Moreover the availability of gβl , gβr , gβo allows to use different values of same variable in different

operands. For example, if we have an operation:

a × a = b

Which can be represented by the variable polynomials:

la(x) = x, ra(x) = x, oa(x) = 0

lb(x) = 0, rb(x) = 0, ob(x) = x

While the expected output is b = a2, we can set different values of a, for example a = 2, a = 5

as following:

• proving:

– . . . form left operand polynomial with a = 2: L(x) = 2la(x) + 10lb(x)

– form right operand polynomial with a = 5: R(x) = 2ra(x) + 3 + 10rb(x)

– form output polynomial with b = 10: O(x) = 2oa(x) + 10ob(x)

– . . . compute encryptions:

gL(s) =
(

gla(s)
)2

·
(

glb(s)
)10

= g2la(s)+10lb(s)

gR(s) =
(

gra(s)
)2

· (g)3 ·
(

grb(s)
)10

= g2ra(s)+3+10rb(s)

gO(s) =
(

goa(s)
)2

·
(

gob(s)
)10

= g2oa(s)+10ob(s)

– compute variable consistency polynomial:

gZ(s) =
(

gβlla(s)+βrra(s)+βooa(s)
)2

·
(

gβr

)3
·
(

gβllb(s)+βrrb(s)+βoob(s)
)10

=

gβl(2la(s)+10lb(s)) + βr(2ra(s)+3+10rb(s)) + βo(2oa(s)+10ob(s))

• verification

53

– . . . variable values consistency check, should hold:

e
(

gL, gβl

)

· e
(

gR, gβr

)

· e
(

gO, gβo

)

= e
(
gZ , g

)

Note: polynomials oa(x), lb(x), rb(x) can actually be disregarded since they are evaluating to 0

for any x, however we preserve those for completeness.

Such ability sabotages the soundness of proof. It is clear that encrypted β-s should not be

available to a prover.

Non-Malleability

One way to address malleability is to make gβl , gβr , gβo from verification key incompatible

with gZ(s) by multiplying them in encrypted space by a random secret γ (gamma) during

setup stage: gβlγ , gβrγ , gβoγ . Consecutively such masked encryptions does not allow feasibility

to modify gZ(s) in a meaningful way since Z(s) is not a multiple of γ, e.g., gZ(s) · gv
′·βlγ =

g
βl(L(s)+ v′γ)+βrR(s)+βoO(s)

. Because a prover does not know the γ the alteration will be random.

The modification requires us to balance the variable values consistency check equation in the

protocol multiplying Z(s) by γ:

• setup

– . . . sample random βl, βr, βo, γ

– . . . set verification key:
(
. . . , gβlγ , gβrγ , gβoγ , gγ

)

• proving . . .

• verification

– . . . variable values consistency check should hold:

e
(

gL, gβlγ
)

· e
(

gR, gβrγ
)

· e
(

gO, gβoγ
)

= e
(
gZ , gγ

)

It is important to note that we exclude the case when variable polynomials are of 0-degree (e.g.,

l1(x) = 1x0), which otherwise would allow to expose encryptions of β in variable consistency

polynomials of proving key
{
gβlli(s)+βrri(s)+βooi(s)

}

i∈{1,...,n}
in case when any two of operands /

output is zero, e.g., for l1(x) = 1, r1(s) = 0, o1(s) = 0 this will result in gβll1(s)+βrr1(s)+βoo1(s) =

gβl .

We could also similarly mask the α-s to address the malleability of variable polynomials. Ho-

wever it is not necessary since any modification of a variable polynomial needs to be reflected

in variable consistency polynomials which are not possible to modify.

4.9.4 Optimization of Variable Values Consistency Check

The variable values consistency check is effective now, but it adds 4 expensive pairing operations

and 4 new terms to the verification key. The Pinocchio protocol [Par+13] uses a clever selection

of the generators g for each operand ingraining the “shifts”:

• Setup

54

– . . . sample random β, γ, ρl, ρr and set ρo = ρl · ρr

– set generators gl = gρl , gr = gρr , go = gρo

– set proving key:({

gs
k
}

k∈[d]
,
{

g
li(s)
l , g

ri(s)
r , g

oi(s)
o , g

αlli(s)
l , g

αrri(s)
r , g

αooi(s)
o , g

βli(s)
l · g

βri(s)
r · g

βoi(s)
o

})

– set verification key:
(

g
t(s)
o , gαl , gαr , gαo , gβγ , gγ

)

• Proving

– . . . assign variable values

gZ(s) =

n∏

i=1

(

g
βli(s)
l · gβri(s)r · gβoi(s)o

)vi

• Verification

– . . . variable polynomials restriction check:

e
(

gL
′

l , g
)

= e
(
gLl , g

αl
)
, and similarly for gRr , g

O
o

– variable values consistency check:

e
(

gLl · gRr · gOo , g
βγ
)

= e
(
gZ , gγ

)

– valid operations check:

e
(
gLl · gRr

)
= e

(

gto, g
h
)

e
(
gOo , g

)
⇒

e (g, g)ρlρrLR = e (g, g)ρlρrth+ρlρrO

Such randomization of the generators further adds to the security making variable polynomials

malleability, described in remark 4.1, ineffective because for intended change it must be a

multiple of either ρl, ρr or ρo, raw or encrypted versions of which are not available (assuming, as

stated previously that we’re not dealing with 0-degree variable polynomials which could expose

encrypted versions).

The optimization makes verification key two elements smaller and eliminates two pairing ope-

rations from the verification step.

Note: there are further protocol improvements in the Jens Groth’s 2016 paper [Gro16].

4.10 Constraints

Our analysis has been primarily focusing on the notion of operation. However, the protocol

is not actually “computing” but rather is checking that the output value is the correct result

of an operation for the operand’s values. That is why it is called a constraint, i.e., a verifier

is constraining a prover to provide valid values for the predefined “program” no matter what

are they. A multitude of constraints is called a constraint system (in our case it is a rank 1

constraint system or R1CS).

55

Note: This implies that one way to find all correct solutions is to perform a brute-force of all

possible combinations of values and select only “valid” ones, or use more sophisticated techniques

of constraint satisfaction [con18].

Therefore we can also use constraints to ensure other relationships. For example, if we want to

make sure that the value of the variable a can only be 0 or 1 (i.e., binary), we can do it with

the simple constraint:

a × a = a

We can also constrain a to only be 2:

(a− 2) × 1 = 0

A more complex example is ensuring that number a is a 4-bit number24, in other words it

is possible to represent a with 4 bits. We can also call it “ensuring number range” since

a 4-bit number can represent 24 combinations, therefore 16 numbers in the range from 0 to

15. In the decimal number system any number can be represented as a sum of powers of the

base 10 (as the number of fingers on our hands) with corresponding coefficients, for example,

123 = 1·102+2·101+3·100. Similarly a binary number can be represented as a sum of powers of

base 2 with corresponding coefficients, for example, 1011 (binary) = 1 ·23+0 ·22+1 ·21+1 ·20 =

11 (decimal).

Therefore if a is a 4-bit number, then a = b3 · 2
3 + b2 · 2

2 + b1 · 2
1 + b0 · 2

0 for some boolean

b0, b1, b2, b3. The constraint can be following:

1 : a × 1 = 8 · b3 + 4 · b2 + 2 · b1 + 1 · b0

and to ensure that b0, b1, b2, b3 can only be binary we need to add:

2 : b0 × b0 = b0

3 : b1 × b1 = b1

4 : b2 × b2 = b2

5 : b3 × b3 = b3

Quite sophisticated constraints can be applied this way, ensuring that the values used are

complying with the rules. It is important to note that the above constraint 1 is not possible in

the current operation’s construction:
n∑

i=1

c l,i · vi ×

n∑

i=1

c r,i · vi =

n∑

i=1

c o,i · vi

Because the value 1 (and 2 from the previous constraint) has to be expressed through c · vone,

where c can be ingrained into the proving key, but the vone may have any value because the

prover supplies it. While we can enforce the c · v to be 0 by setting c = 0, it is hard to find a

constraint to enforce vone to be 1 in the construction we are limited by. Therefore there should

be a way for a verifier to set the value of vone.

24Also called nibble

56

4.11 Public Inputs and One

The proofs would have limited usability if it were not possible to check them against the verifier’s

inputs, e.g., knowing that the prover has multiplied two values without knowing what was the

result and/or values. While it is possible to “hardwire” the values to check against (e.g., the

result of multiplication must always be 12) in the proving key, this would require to generate

separate pair of keys for each desired “verifier’s input.”

Therefore it would be universal if the verifier could specify some of the values (inputs or/and

outputs) for the computation, including the vone, instead of the prover.

First, let us consider the proof values gL(s), gR(s), gO(s). Because we are using the homomorphic

encryption it is possible to augment these values, for example, we can add another encrypted

polynomial evaluation gL(s) · glv(s) = gL(s)+lv(s), which means that the verifier could add other

variable polynomials to the already provided ones. Therefore if we could exclude necessary

variable polynomials from the ones available to the prover, the verifier would be able to set his

values on those variables, while the computation check should still match.

It is easy to achieve since the verifier is already constraining the prover in the choice of po-

lynomials he can use empolying the α-shift. Therefore those variable polynomials can be mo-

ved from the proving key to the verification key while eliminating its α-s and β checksum

counterparts.

The necessary protocol update:

• Setup

– . . . separate all n variable polynomials into two groups:

∗ verifier’s m+ 1:

Lv(x) = l0(x) + l1(x) + . . .+ lm, and alike for Rv(x) and Ov(x),

where index 0 is reserved for the value of vone = 1

∗ prover’s n−m:

Lp(x) = lm+1(x) + . . . + ln(x), and alike for Rp(x) and Op(x)

– set proving key:
({

gs
k
}

k∈[d]
,
{

g
li(s)
l , gri(s)r , goi(s)o , g

αlli(s)
l , gαrri(s)

r , gαooi(s)
o , g

βli(s)
l · gβri(s)r · gβoi(s)o

}

i∈{m+1,...,n}

)

– add to the verification key:(

. . . ,
{

g
li(s)
l , g

ri(s)
r , g

oi(s)
o

}

i∈{0,...,m}

)

• Proving

– . . . calculate h(x) accounting for the verifier’s polynomials: h(x) =
L(x) ·R(x)−O(x)

t(x)
,

where L(x) = Lv(x) + Lp(x), and similarly for R(x), O(x)

– provide the proof:
(

g
Lp(s)
l , g

Rp(s)
r , g

Op(s)
o , g

αlLp(s)
l , g

αrRp(s)
r , g

αoOp(s)
o , gZ(s), gh(s)

)

57

• Verification

– assign verifier’s variable polynomial values and add to 1:

g
Lv(s)
l = g

l0(s)
l ·

m∏

i=1

(

g
li(s)
l

)vi

and similarly for g
Rv(s)
r and g

Ov(s)
o

– variable polynomials restriction check:

e
(

g
Lp

l , gαl

)

= e
(

g
L′

p

l , g
)

and similarly for g
Rp
r and g

Op
o

– variable values consistency check:

e
(

g
Lp

l g
Rp
r g

Op
o , gβγ

)

= e
(
gZ , gγ

)

– valid operations check:

e
(

g
Lv(s)
l g

Lp

l , g
Rv(s)
r g

Rp
r

)

= e
(
gto, g

h
)
· e

(

g
Ov(s)
o g

Op
o , g

)

Note: following from the protocol properties (section 4.6.1) the 1 represented by polynomials

l0(x), r0(x), o0(x) already have appropriate values at the corresponding operations and therefore

needs no assignment.

Note: verifier will have to do extra work on the verification step, which is proportionate to the

number of variables he assigns.

Effectively this is taking some variables from the prover into the hands of verifier while still

preserving the balance of the equation. Therefore the valid operations check should still hold,

but only if the prover has used the same values that the verifier used for his input.

The value of 1 is essential and allows to derive any number25 through multiplication by a

constant term, for example, to multiply a by 123:

1 · a × 123 · vone = 1 · r

4.12 Zero-Knowledge Proof of Computation

Since the introduction of the general-purpose computation protocol (section 4.4 proof of ope-

ration) we had to let go of the zero-knowledge property, to make the transition simpler. Until

this point, we have constructed a verifiable computation protocol.

Previously to make a proof of polynomial zero-knowledge we have used the random δ-shift,

which makes the proof indistinguishable from random (section 3.5):

δp(s) = t(s) · δh(s)

With the computation we are proving instead that:

L(s) · R(s)−O(s) = t(s)h(s)

25In the chosen finite field

58

While we could just adapt this approach to the multiple polynomials using same δ, i.e., supplying

randomized values δL(s), δR(s), δ2O(s), δ2h(s), which would satisfy the valid operations check

through pairings:

e (g, g)δ
2L(s)R(s) = e(g, g)δ

2(t(s)h(s)+O(s))

The issue is that having same δ hinders security, because we provide those values separately in

the proof:

• one could easily identify if two different polynomial evaluations have same value (e.g.,

gδL(s) = gδR(s), etc.), i.e., learning some knowledge

• potential insignificance of differences of values between L(s) and R(s) could allow factoring

of those differences through brute-force, for example if L(s) = 5R(s), iterating check

gL(s) =
(
gR(s)

)i
, for i ∈ {1...N} would reveal the 5× difference in just 5 steps. Same

brute-force can be performed on encrypted addition operation, e.g., gL(s) = gR(s)+5

• other correlations between elements of the proof may be discovered, e.g., if e(gδL(s), gδR(s)) =

e(gδ
2O(s), g) then L(x) · R(x) = O(x), etc.

Note: the optimization 4.9.4 makes such data mining harder but still allows to discover relation-

ships, apart from the fact that verifier can choose ρl, ρr in a particular way that can facilitate

revealing of knowledge26.

Consequently, we need to have different randomness (δ-s) for each polynomial evaluation,

e.g.:

δlL(s) · δrR(s)− δoO(s) = t(s) · (∆ ? h(s))

To resolve inequality on the right side, we can only modify the proof’s value h(s), without

alteration of the protocol which would be preferable. Delta (∆) here represents the difference we

need to apply to h(s) in order to counterbalance the randomness on the other side of the equation

and ? represents either multiplication or addition operation (which in turn accommodates

division and subtraction). If we chose to apply ∆ through multiplication (? = ×) this would

mean that it is impossible to find ∆ with overwhelming probability, because of randomization:

∆ =
δlL(s) · δrR(s)− δoO(s)

t(s)h(s)

We could set δo = δl · δr, which transforms into:

∆ =
δlδr(L(s) · R(s)−O(s))

t(s)h(s)
= δlδr

However, as noted previously this hinders the zero-knowledge property, and even more impor-

tantly such construction will not accommodate the verifier’s input polynomials since they must

be multiples of the corresponding δ-s, which would require an interaction.

26As long as it is not a diversified setup

59

We can try adding randomness to the evaluations:

(L(s) + δl) · (R(s) + δr)− (O(s) + δo) = t(s) · (∆× h(s))

∆ =

t(s)h(s)
︷ ︸︸ ︷

L(s)R(s)−O(s)+δrL(s) + δlR(s) + δlδr − δo

t(s)h(s)
= 1 +

δrL(s) + δlR(s) + δlδr − δo

t(s)h(s)

However due to randomness it is non-divisible. Even if we address this by multiplying each

δ with t(s)h(s), because we apply ∆ through multiplication of h(s), and ∆ will consist of

encrypted evaluations (i.e., gL(s), etc.) it will not be possible to compute g∆h(s) without use

of pairings (result of which is in another number space). Likewise computation is not possible

through encrypted evaluation of ∆h(x) using encrypted powers
{

gs
i
}

i∈[d]
, because the degree of

h(x) and ∆ is d, hence the degree of ∆h(x) is up to 2d. Moreover, it is not possible to compute

such randomized operand polynomial evaluation gL(s)+δlt(s)h(s) for the same reason.

Therefore we should try applying ∆ through addition (? = +), since it is available for homo-

morphically encrypted values.

(L(s) + δl) · (R(s) + δr)− (O(s) + δo) = t(s) · (∆ + h(s))

∆ =
L(s)R(s)−O(s) + δrL(s) + δlR(s) + δlδr − δo − t(s)h(s)

t(s)
⇒

∆ =
δrL(s) + δlR(s) + δlδr − δo

t(s)

Every term in the numerator is a multiple of a δ, therefore we can make it divisible by multiplying

each δ with t(s):

(L(s) + δlt(s)) · (R(s) + δrt(s))− (O(s) + δot(s)) = t(s) · (∆ + h(s))

✭
✭
✭
✭
✭
✭
✭
✭✭

L(s)R(s)−O(s) + t(s)(δrL(s) + δlR(s) + δlδrt(s)− δo) = t(s)∆ +
✘
✘
✘
✘

t(s)h(s)

∆ = δrL(s) + δlR(s) + δlδrt(s)− δo

Which we can efficiently compute in the encrypted space:

gL(s)+δlt(s) = gL(s) ·
(

gt(s)
)δl

, etc.

g∆ =
(

gL(s)
)δr

·
(

gR(s)
)δl

·
(

gt(s)
)δlδr

g−δo

This leads to passing of valid operations check while concealing the encrypted values.

L · R−O + t(δrL+ δlR+ δlδrt− δo) = t(s)h+ t(s)(δrL+ δlR+ δlδrt− δo)

The construction is statistically zero-knowledge due to addition of uniformly random multiples

of δl, δr, δo (see theorem 13 of [Gen+12]).

Note: this approach is also consistent with the verifier’s operands, e.g., g
Lp+δlt

l ·gLv

l = g
Lp+Lv+δlt

l ,

therefore the valid operations check holds but still only if the prover have used verifier’s values

to construct the proof (i.e., ∆ = δr(Lp + Lv) + δl(Rp + Rv) + δlδrt − δo), see next section for

more details.

To make the “variable polynomials restriction” and “variable values consistency” checks cohe-

rent with the zero-knowledge alterations, it is necessary to add the following parameters to the

60

proving key:

g
t(s)
l , gt(s)r , gt(s)o , g

αlt(s)
l , gαrt(s)

r , gαot(s)
o , g

βt(s)
l , gβt(s)r , gβt(s)o

It is quite curious that the original Pinocchio protocol [Par+13] was concerned primarily with the

verifiable computation and less with the zero-knowledge property, which is a minor modification

and comes almost for free.

4.13 zk-SNARK Protocol

Considering all the gradual improvements the final zero-knowledge succinct non-interactive ar-

guments of knowledge protocol is (the zero-knowledge components are optional and highlighted

with a different color):

• Setup

– select a generator g and a cryptographic pairing e

– for a function f(u) = y with n total variables of which m are input/output variables,

convert into the polynomial form27
(
{li(x), ri(x), oi(x)}i∈{0,...,n}, t(x)

)
of degree d (equal

to the number of operations) and size n+ 1

– sample random s, ρl, ρr, αl, αr, αo, β, γ

– set ρo = ρl · ρr and the operand generators gl = gρl , gr = gρr , go = gρo

– set the proving key:
({

gs
k
}

k∈[d]
,
{

g
li(s)
l , gri(s)r , goi(s)o

}

i∈{0,...,n}
,

{

g
αlli(s)
l , gαrri(s)

r , gαooi(s)
o , g

βli(s)
l gβri(s)r gβoi(s)o

}

i∈{m+1,...,n}
,

g
t(s)
l , gt(s)r , gt(s)o , g

αlt(s)
l , gαrt(s)

r , gαot(s)
o , g

βt(s)
l , gβt(s)r , gβt(s)o

)

– set the verification key:
(

g1, gt(s)o ,
{

g
li(s)
l , gri(s)r , goi(s)o

}

i∈{0,...,m}
, gαl , gαr , gαo , gγ , gβγ

)

• Proving

– for the input u, execute the computation of f(u) obtaining values {vi}i∈{m+1,...,n} for all

the itermediary variables

– assign all values to the unencrypted variable polynomials L(x) = l0(x) +
∑n

i=1 vi · li(x)

and similarly R(x), O(x)

– sample random δl, δr and δo

– find h(x) =
L(x)R(x)−O(x)

t(x)
+ δrL(x) + δlR(x) + δlδrt(x)− δo

27A quadratic arithmetic program

61

– assign the prover’s variable values to the encrypted variable polynomials and apply

zero-knowledge δ-shift g
Lp(s)
l =

(

g
t(s)
l

)δl
·

n∏

i=m+1

(

g
li(s)
l

)vi
and similarly g

Rp(s)
r , g

Op(s)
o

– assign its α-shifted pairs g
L′

p(s)

l =
(

g
αlt(s)
l

)δl
·

n∏

i=m+1

(

g
αlli(s)
l

)vi
and similarly g

R′

p(s)
r , g

O′

p(s)
o

– assign the variable values consistency polynomials

gZ(s) =
(

g
βt(s)
l

)δl
(

gβt(s)r

)δr
(

gβt(s)o

)δo
·

n∏

i=m+1

(

g
βli(s)
l gβri(s)r gβoi(s)o

)vi

– compute the proof
(

g
Lp(s)
l , g

Rp(s)
r , g

Op(s)
o , gh(s), g

L′

p(s)

l , g
R′

p(s)
r , g

O′

p(s)
o , gZ(s)

)

• Verification

– parse a provided proof as
(

g
Lp

l , g
Rp
r , g

Op
o , gh, g

L′

p

l , g
R′

p
r , g

O′

p
o , gZ

)

– assign input/output values to verifier’s encrypted polynomials and add to 1:

g
Lv(s)
l = g

l0(s)
l ·

m∏

i=1

(

g
li(s)
l

)vi
and similarly for g

Rv(s)
r and g

Ov(s)
o

– variable polynomials restriction check :

e
(

g
Lp

l , gαl

)

= e
(

g
L′

p

l , g
)

and similarly for g
Rp
r and g

Op
o

– variable values consistency check:

e
(

g
Lp

l g
Rp
r g

Op
o , gβγ

)

= e
(
gZ , gγ

)

– valid operations check:

e
(

g
Lp

l g
Lv(s)
l , g

Rp
r g

Rv(s)
r

)

= e
(

g
t(s)
o , gh

)

· e
(

g
Op
o g

Ov(s)
o , g

)

5 Conclusions

We ended up with an effective protocol which allows proving computation:

• succinctly — independently from the amount of computation the proof is of constant,

small size

• non-interactively — as soon as the proof is computed it can be used to convince any

number of verifiers without direct interaction with the prover

• with argumented knowledge — the statement is correct with non-negligible probability,

i.e., fake proofs are infeasible to construct; moreover prover knows the corresponding

values28 for the true statement, e.g., if the statement is “B is a result of sha256(a)” then

the prover knows some a such that B = sha256(a) which is useful since B could only be

computed with the knowledge of a as well as it’s infeasible to compute a from B only29

28A witness
29Assuming a has enough entropy

62

• in zero-knowledge — it is infeasible to extract any knowledge from the proof, i.e., it is

indistinguishable from random

It was possible to achieve primary due to unique properties of polynomials, modular arithmetic,

homomorphic encryption, elliptic curve cryptography, cryptographic pairings and ingenuity of

the inventors.

This protocol proves correctness of computation of a unique finite execution machine which

in one operation can add together almost any number of variables but may only perform one

multiplication. Therefore there is an opportunity to both optimize programs to leverage this

specificity efficiently as well as use constructions which minimize the number of operations.

It is essential that verifier does not have to know any secret data in order to verify a proof

so that properly constructed verification key can be published and used by anyone in a non-

interactive manner. Which is contrary to the “designated verifier” schemes where the proof will

convince only one party, therefore it is non-transferable. In zk-SNARK context, we can achieve

this property if untrustworthy or a single party generates the keypair.

The field of zero-knowledge proof constructions is continuously evolving, introducing optimi-

zations ([Ben+13; Gro16; GM17]), improvements such as updatable proving and verification

keys ([Gro+18]), and new constructions (Bulletproofs [Bün+17], ZK-STARK [Ben+18], Sonic

[Mal+19]).

Acknowledgments

We are grateful to Mary Maller and AndrewMiller for their valuable comments on this work.

63

6 References

[Bit+11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From Extractable

Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back

Again. Cryptology ePrint Archive, Report 2011/443. https://eprint.iacr.org/

2011/443. 2011.

[Par+13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly

Practical Verifiable Computation. Cryptology ePrint Archive, Report 2013/279.

https://eprint.iacr.org/2013/279. 2013.

[Rei16] Christian Reitwiessner. zkSNARKs in a Nutshell. 2016. url: https://blog.ethereum.

org/2016/12/05/zksnarks-in-a-nutshell/ (visited on 2018-05-01).

[But16] Vitalik Buterin. Quadratic Arithmetic Programs: from Zero to Hero. https : //

medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649.

2016. (Visited on 2018-05-01).

[But17] Vitalik Buterin. zk-SNARKs: Under the Hood. 2017. url: https://medium.com/

@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 (visited on 2018-

05-01).

[Gab17] Ariel Gabizon. Explaining SNARKs. https://z.cash/blog/snark-explain/. 2017.

(Visited on 2018-05-01).

[Ben+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. Zerocash: Decentralized Anonymous Payments

from Bitcoin. Cryptology ePrint Archive, Report 2014/349. https://eprint.iacr.

org/2014/349. 2014.

[GMR85] S Goldwasser, S Micali, and C Rackoff. “The Knowledge Complexity of Interactive

Proof-systems”. In: Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing. STOC ’85. Providence, Rhode Island, USA: ACM, 1985,

pp. 291–304. isbn: 0-89791-151-2. doi: 10.1145/22145.22178. url: http://doi.

acm.org/10.1145/22145.22178.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-interactive Zero-knowledge

and Its Applications”. In: Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing. STOC ’88. Chicago, Illinois, USA: ACM, 1988, pp. 103–112.

isbn: 0-89791-264-0. doi: 10.1145/62212.62222. url: http://doi.acm.org/10.

1145/62212.62222.

[Gro10] Jens Groth. “Short pairing-based non-interactive zero-knowledge arguments”. In:

International Conference on the Theory and Application of Cryptology and Infor-

mation Security. Springer. 2010, pp. 321–340.

[Gen+12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic

Span Programs and Succinct NIZKs without PCPs. Cryptology ePrint Archive, Re-

port 2012/215. https://eprint.iacr.org/2012/215. 2012.

[Pik13] Scott Pike. Evaluating Polynomial Functions. 2013. url: http://www.mesacc.edu/

~scotz47781/mat120/notes/polynomials/evaluating/evaluating.html (visited

on 2018-05-01).

64

https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2013/279
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6
https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6
https://z.cash/blog/snark-explain/
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349
http://dx.doi.org/10.1145/22145.22178
http://doi.acm.org/10.1145/22145.22178
http://doi.acm.org/10.1145/22145.22178
http://dx.doi.org/10.1145/62212.62222
http://doi.acm.org/10.1145/62212.62222
http://doi.acm.org/10.1145/62212.62222
https://eprint.iacr.org/2012/215
http://www.mesacc.edu/~scotz47781/mat120/notes/polynomials/evaluating/evaluating.html
http://www.mesacc.edu/~scotz47781/mat120/notes/polynomials/evaluating/evaluating.html

[Pik14] Scott Pike. Dividing by a Polynomial. http : //www.mesacc.edu/~scotz47781/

mat120/notes/divide_poly/long_division/long_division.html. 2014. (Vis-

ited on 2018-05-01).

[Dam91] Ivan Damg̊ard. “Towards practical public key systems secure against chosen ci-

phertext attacks”. In: Annual International Cryptology Conference. Springer. 1991,

pp. 445–456.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated verifier proofs

and their applications”. In: International Conference on the Theory and Applications

of Cryptographic Techniques. Springer. 1996, pp. 143–154.

[DBS04] Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-Based Cryptographic Pro-

tocols: A Survey. Cryptology ePrint Archive, Report 2004/064. https://eprint.

iacr.org/2004/064. 2004.

[DK18] Apoorvaa Deshpande and Yael Kalai. Proofs of Ignorance and Applications to 2-

Message Witness Hiding. Cryptology ePrint Archive, Report 2018/896. https://

eprint.iacr.org/2018/896. 2018.

[Wil16] Zooko Wilcox. The Design of the Ceremony. 2016. url: https://z.cash/blog/

the-design-of-the-ceremony/ (visited on 2018-05-01).

[Gro16] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology

ePrint Archive, Report 2016/260. https://eprint.iacr.org/2016/260. 2016.

[con18] Wikipedia contributors. Constraint satisfaction. Wikipedia, The Free Encyclopedia.

2018. (Visited on 2018-08-05).

[Ben+13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-

Interactive Zero Knowledge for a von Neumann Architecture. Cryptology ePrint

Archive, Report 2013/879. https://eprint.iacr.org/2013/879. 2013.

[GM17] Jens Groth and Mary Maller. Snarky Signatures:

Minimal Signatures of Knowledge from Simulation-Extractable SNARKs. Cryptol-

ogy ePrint Archive, Report 2017/540. https://eprint.iacr.org/2017/540. 2017.

[Gro+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Up-

datable and Universal Common Reference Strings with Applications to zk-SNARKs.

Cryptology ePrint Archive, Report 2018/280. https://eprint.iacr.org/2018/

280. 2018.

[Bün+17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and More.

Cryptology ePrint Archive, Report 2017/1066. https://eprint.iacr.org/2017/

1066. 2017.

[Ben+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-

parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,

Report 2018/046. https://eprint.iacr.org/2018/046. 2018.

[Mal+19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-

Knowledge SNARKs from Linear-Size Universal and Updateable Structured Refer-

ence Strings. Cryptology ePrint Archive, Report 2019/099. https://eprint.iacr.

org/2019/099. 2019.

65

http://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/long_division/long_division.html
http://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/long_division/long_division.html
https://eprint.iacr.org/2004/064
https://eprint.iacr.org/2004/064
https://eprint.iacr.org/2018/896
https://eprint.iacr.org/2018/896
https://z.cash/blog/the-design-of-the-ceremony/
https://z.cash/blog/the-design-of-the-ceremony/
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2017/540
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099

	0 Preface
	1 Introduction
	2 The Medium of a Proof
	3 Non-Interactive Zero-Knowledge of a Polynomial
	3.1 Proving Knowledge of a Polynomial
	3.2 Factorization
	3.3 Obscure Evaluation
	3.3.1 Homomorphic Encryption
	3.3.2 Modular Arithmetic
	3.3.3 Strong Homomorphic Encryption
	3.3.4 Encrypted Polynomial

	3.4 Restricting a Polynomial
	3.5 Zero-Knowledge
	3.6 Non-Interactivity
	3.6.1 Multiplication of Encrypted Values
	3.6.2 Trusted Party Setup
	3.6.3 Trusting One out of Many

	3.7 Succinct Non-Interactive Argument of Knowledge of Polynomial
	3.7.1 Conclusions

	4 General-Purpose Zero-Knowledge Proofs
	4.1 Computation
	4.2 Single Operation
	4.2.1 Arithmetic Properties of Polynomials

	4.3 Enforcing Operation
	4.4 Proof of Operation
	4.5 Multiple Operations
	4.5.1 Polynomial Interpolation
	4.5.2 Multi-Operation Polynomials

	4.6 Variable Polynomials
	4.6.1 Single-Variable Operand Polynomial
	4.6.2 Multi-Variable Operand Polynomial

	4.7 Construction Properties
	4.7.1 Constant Coefficients
	4.7.2 Addition for Free
	4.7.3 Addition, Subtraction and Division

	4.8 Example Computation
	4.9 Verifiable Computation Protocol
	4.9.1 Non-Interchangeability of Operands and Output
	4.9.2 Variable Consistency Across Operands
	4.9.3 Non-malleability of Variable and Variable Consistency Polynomials
	4.9.4 Optimization of variable values consistency Check

	4.10 Constraints
	4.11 Public Inputs and One
	4.12 Zero-Knowledge Proof of Computation
	4.13 zk-SNARK Protocol

	5 Conclusions
	6 References

